Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
e0c9bb65
Commit
e0c9bb65
authored
Apr 27, 2013
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added more python bindings
parent
affd197e
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
197 additions
and
22 deletions
+197
-22
decision_funcions.cpp
tools/python/src/decision_funcions.cpp
+55
-4
dlib.cpp
tools/python/src/dlib.cpp
+17
-0
pyassert.h
tools/python/src/pyassert.h
+8
-0
svm_c_trainer.cpp
tools/python/src/svm_c_trainer.cpp
+117
-18
No files found.
tools/python/src/decision_funcions.cpp
View file @
e0c9bb65
...
@@ -25,8 +25,9 @@ double predict (
...
@@ -25,8 +25,9 @@ double predict (
else
if
(
df
.
basis_vectors
(
0
).
size
()
!=
samp
.
size
())
else
if
(
df
.
basis_vectors
(
0
).
size
()
!=
samp
.
size
())
{
{
std
::
ostringstream
sout
;
std
::
ostringstream
sout
;
sout
<<
"Input vector should have "
<<
df
.
basis_vectors
(
0
).
size
()
<<
" dimensions, not "
<<
samp
.
size
()
<<
"."
;
sout
<<
"Input vector should have "
<<
df
.
basis_vectors
(
0
).
size
()
PyErr_SetString
(
PyExc_IndexError
,
sout
.
str
().
c_str
()
);
<<
" dimensions, not "
<<
samp
.
size
()
<<
"."
;
PyErr_SetString
(
PyExc_ValueError
,
sout
.
str
().
c_str
()
);
boost
::
python
::
throw_error_already_set
();
boost
::
python
::
throw_error_already_set
();
}
}
return
df
(
samp
);
return
df
(
samp
);
...
@@ -43,12 +44,62 @@ void add_df (
...
@@ -43,12 +44,62 @@ void add_df (
.
def_pickle
(
serialize_pickle
<
df_type
>
());
.
def_pickle
(
serialize_pickle
<
df_type
>
());
}
}
template
<
typename
df_type
>
typename
df_type
::
sample_type
get_weights
(
const
df_type
&
df
)
{
if
(
df
.
basis_vectors
.
size
()
==
0
)
{
PyErr_SetString
(
PyExc_ValueError
,
"Decision function is empty."
);
boost
::
python
::
throw_error_already_set
();
}
df_type
temp
=
simplify_linear_decision_function
(
df
);
return
temp
.
basis_vectors
(
0
);
}
template
<
typename
df_type
>
typename
df_type
::
scalar_type
get_bias
(
const
df_type
&
df
)
{
if
(
df
.
basis_vectors
.
size
()
==
0
)
{
PyErr_SetString
(
PyExc_ValueError
,
"Decision function is empty."
);
boost
::
python
::
throw_error_already_set
();
}
return
df
.
b
;
}
template
<
typename
kernel_type
>
void
add_linear_df
(
const
std
::
string
name
)
{
typedef
decision_function
<
kernel_type
>
df_type
;
class_
<
df_type
>
(
name
.
c_str
())
.
def
(
"predict"
,
predict
<
df_type
>
)
.
def
(
"get_weights"
,
get_weights
<
df_type
>
)
.
def
(
"get_bias"
,
get_bias
<
df_type
>
)
.
def_pickle
(
serialize_pickle
<
df_type
>
());
}
void
bind_decision_functions
()
void
bind_decision_functions
()
{
{
add_df
<
linear_kernel
<
sample_type
>
>
(
"_decision_function_linear"
);
add_linear_df
<
linear_kernel
<
sample_type
>
>
(
"_decision_function_linear"
);
add_df
<
sparse_linear_kernel
<
sparse_vect
>
>
(
"_decision_function_sparse_linear"
);
add_linear_df
<
sparse_linear_kernel
<
sparse_vect
>
>
(
"_decision_function_sparse_linear"
);
add_df
<
histogram_intersection_kernel
<
sample_type
>
>
(
"_decision_function_histogram_intersection"
);
add_df
<
sparse_histogram_intersection_kernel
<
sparse_vect
>
>
(
"_decision_function_sparse_histogram_intersection"
);
add_df
<
polynomial_kernel
<
sample_type
>
>
(
"_decision_function_polynomial"
);
add_df
<
sparse_polynomial_kernel
<
sparse_vect
>
>
(
"_decision_function_sparse_polynomial"
);
add_df
<
radial_basis_kernel
<
sample_type
>
>
(
"_decision_function_radial_basis"
);
add_df
<
radial_basis_kernel
<
sample_type
>
>
(
"_decision_function_radial_basis"
);
add_df
<
sparse_radial_basis_kernel
<
sparse_vect
>
>
(
"_decision_function_sparse_radial_basis"
);
add_df
<
sparse_radial_basis_kernel
<
sparse_vect
>
>
(
"_decision_function_sparse_radial_basis"
);
add_df
<
sigmoid_kernel
<
sample_type
>
>
(
"_decision_function_sigmoid"
);
add_df
<
sparse_sigmoid_kernel
<
sparse_vect
>
>
(
"_decision_function_sparse_sigmoid"
);
}
}
...
...
tools/python/src/dlib.cpp
View file @
e0c9bb65
...
@@ -100,6 +100,22 @@ string sparse_vector__repr__ (const std::vector<std::pair<unsigned long,double>
...
@@ -100,6 +100,22 @@ string sparse_vector__repr__ (const std::vector<std::pair<unsigned long,double>
return
sout
.
str
();
return
sout
.
str
();
}
}
tuple
get_training_data
()
{
typedef
matrix
<
double
,
0
,
1
>
sample_type
;
std
::
vector
<
sample_type
>
samples
;
std
::
vector
<
double
>
labels
;
sample_type
samp
(
3
);
samp
=
1
,
2
,
3
;
samples
.
push_back
(
samp
);
labels
.
push_back
(
+
1
);
samp
=
-
1
,
-
2
,
-
3
;
samples
.
push_back
(
samp
);
labels
.
push_back
(
-
1
);
return
make_tuple
(
samples
,
labels
);
}
BOOST_PYTHON_MODULE
(
dlib
)
BOOST_PYTHON_MODULE
(
dlib
)
{
{
...
@@ -138,6 +154,7 @@ BOOST_PYTHON_MODULE(dlib)
...
@@ -138,6 +154,7 @@ BOOST_PYTHON_MODULE(dlib)
.
def
(
vector_indexing_suite
<
std
::
vector
<
std
::
vector
<
pair_type
>
>
>
())
.
def
(
vector_indexing_suite
<
std
::
vector
<
std
::
vector
<
pair_type
>
>
>
())
.
def_pickle
(
serialize_pickle
<
std
::
vector
<
std
::
vector
<
pair_type
>
>
>
());
.
def_pickle
(
serialize_pickle
<
std
::
vector
<
std
::
vector
<
pair_type
>
>
>
());
def
(
"get_training_data"
,
get_training_data
);
/*
/*
def("tomat",tomat);
def("tomat",tomat);
def("add_to_map", add_to_map);
def("add_to_map", add_to_map);
...
...
tools/python/src/pyassert.h
0 → 100644
View file @
e0c9bb65
#define pyassert(_exp,_message) \
{if ( !(_exp) ) \
{ \
PyErr_SetString( PyExc_ValueError, _message ); \
boost::python::throw_error_already_set(); \
}}
tools/python/src/svm_c_trainer.cpp
View file @
e0c9bb65
...
@@ -4,41 +4,140 @@
...
@@ -4,41 +4,140 @@
#include <dlib/matrix.h>
#include <dlib/matrix.h>
#include "serialize_pickle.h"
#include "serialize_pickle.h"
#include <dlib/svm.h>
#include <dlib/svm.h>
#include "pyassert.h"
using
namespace
dlib
;
using
namespace
dlib
;
using
namespace
std
;
using
namespace
std
;
using
namespace
boost
::
python
;
using
namespace
boost
::
python
;
typedef
matrix
<
double
,
0
,
1
>
sample_type
;
typedef
matrix
<
double
,
0
,
1
>
sample_type
;
typedef
std
::
vector
<
std
::
pair
<
unsigned
long
,
double
>
>
sparse_vect
;
template
<
typename
trainer_type
>
typename
trainer_type
::
trained_function_type
train
(
const
trainer_type
&
trainer
,
const
std
::
vector
<
typename
trainer_type
::
sample_type
>&
samples
,
const
std
::
vector
<
double
>&
labels
)
{
pyassert
(
is_binary_classification_problem
(
samples
,
labels
),
"Invalid inputs"
);
return
trainer
.
train
(
samples
,
labels
);
}
template
<
typename
trainer_type
>
void
set_epsilon
(
trainer_type
&
trainer
,
double
eps
)
{
pyassert
(
eps
>
0
,
"epsilon must be > 0"
);
trainer
.
set_epsilon
(
eps
);
}
template
<
typename
trainer_type
>
double
get_epsilon
(
const
trainer_type
&
trainer
)
{
return
trainer
.
get_epsilon
();
}
template
<
typename
trainer_type
>
void
set_cache_size
(
trainer_type
&
trainer
,
long
cache_size
)
{
pyassert
(
cache_size
>
0
,
"cache size must be > 0"
);
trainer
.
set_cache_size
(
cache_size
);
}
template
<
typename
trainer_type
>
long
get_cache_size
(
const
trainer_type
&
trainer
)
{
return
trainer
.
get_cache_size
();
}
template
<
typename
trainer_type
>
void
set_c
(
trainer_type
&
trainer
,
double
C
)
{
pyassert
(
C
>
0
,
"C must be > 0"
);
trainer
.
set_c
(
C
);
}
template
<
typename
trainer_type
>
void
set_c_class1
(
trainer_type
&
trainer
,
double
C
)
{
pyassert
(
C
>
0
,
"C must be > 0"
);
trainer
.
set_c_class1
(
C
);
}
template
<
typename
trainer_type
>
void
set_c_class2
(
trainer_type
&
trainer
,
double
C
)
{
pyassert
(
C
>
0
,
"C must be > 0"
);
trainer
.
set_c_class2
(
C
);
}
template
<
typename
kernel_type
>
template
<
typename
trainer_type
>
void
bind_kernel
(
double
get_c_class1
(
const
trainer_type
&
trainer
)
{
return
trainer
.
get_c_class1
();
}
template
<
typename
trainer_type
>
double
get_c_class2
(
const
trainer_type
&
trainer
)
{
return
trainer
.
get_c_class2
();
}
template
<
typename
trainer_type
>
class_
<
trainer_type
>
setup_trainer
(
const
std
::
string
&
name
)
{
return
class_
<
trainer_type
>
(
name
.
c_str
())
.
def
(
"train"
,
train
<
trainer_type
>
)
.
def
(
"set_c"
,
set_c
<
trainer_type
>
)
.
def
(
"set_c_class1"
,
set_c_class1
<
trainer_type
>
)
.
def
(
"set_c_class2"
,
set_c_class2
<
trainer_type
>
)
.
def
(
"get_c_class1"
,
get_c_class1
<
trainer_type
>
)
.
def
(
"get_c_class2"
,
get_c_class2
<
trainer_type
>
)
.
def
(
"get_epsilon"
,
get_epsilon
<
trainer_type
>
)
.
def
(
"set_epsilon"
,
set_epsilon
<
trainer_type
>
)
.
def
(
"get_cache_size"
,
get_cache_size
<
trainer_type
>
)
.
def
(
"set_cache_size"
,
set_cache_size
<
trainer_type
>
);
}
void
set_gamma
(
svm_c_trainer
<
radial_basis_kernel
<
sample_type
>
>&
trainer
,
double
gamma
)
{
pyassert
(
gamma
>
0
,
"gamma must be > 0"
);
trainer
.
set_kernel
(
radial_basis_kernel
<
sample_type
>
(
gamma
));
}
double
get_gamma
(
const
svm_c_trainer
<
radial_basis_kernel
<
sample_type
>
>&
trainer
)
{
return
trainer
.
get_kernel
().
gamma
;
}
void
set_gamma_sparse
(
svm_c_trainer
<
sparse_radial_basis_kernel
<
sparse_vect
>
>&
trainer
,
double
gamma
)
)
{
{
typedef
svm_c_trainer
<
kernel_type
>
trainer
;
pyassert
(
gamma
>
0
,
"gamma must be > 0"
)
;
class_
<
trainer
>
(
"svm_c_trainer"
)
trainer
.
set_kernel
(
sparse_radial_basis_kernel
<
sparse_vect
>
(
gamma
));
.
def
(
"train"
,
&
trainer
::
template
train
<
std
::
vector
<
sample_type
>
,
std
::
vector
<
double
>
>
);
}
double
get_gamma_sparse
(
const
svm_c_trainer
<
sparse_radial_basis_kernel
<
sparse_vect
>
>&
trainer
)
{
return
trainer
.
get_kernel
().
gamma
;
}
}
// ----------------------------------------------------------------------------------------
void
bind_svm_c_trainer
()
void
bind_svm_c_trainer
()
{
{
bind_kernel
<
linear_kernel
<
sample_type
>
>
();
setup_trainer
<
svm_c_trainer
<
radial_basis_kernel
<
sample_type
>
>
>
(
"svm_c_trainer_radial_basis"
)
.
def
(
"set_gamma"
,
set_gamma
)
/*
.
def
(
"get_gamma"
,
get_gamma
);
class_<cv>("vector", init<>())
.def("set_size", &cv_set_size)
setup_trainer
<
svm_c_trainer
<
sparse_radial_basis_kernel
<
sparse_vect
>
>
>
(
"svm_c_trainer_sparse_radial_basis"
)
.def("__init__", make_constructor(&cv_from_object))
.
def
(
"set_gamma"
,
set_gamma_sparse
)
.def("__repr__", &cv__str__)
.
def
(
"get_gamma"
,
get_gamma_sparse
);
.def("__str__", &cv__str__)
.def("__len__", &cv__len__)
setup_trainer
<
svm_c_trainer
<
histogram_intersection_kernel
<
sample_type
>
>
>
(
"svm_c_trainer_histogram_intersection"
);
.def("__getitem__", &cv__getitem__)
.add_property("shape", &cv_get_matrix_size)
setup_trainer
<
svm_c_trainer
<
sparse_histogram_intersection_kernel
<
sparse_vect
>
>
>
(
"svm_c_trainer_sparse_histogram_intersection"
);
.def_pickle(serialize_pickle<cv>());
*/
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment