Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
e1458ec8
Commit
e1458ec8
authored
May 25, 2018
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added min_barrier_distance() and also a new overload of get_histogram().
parent
233ae95c
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
349 additions
and
1 deletion
+349
-1
equalize_histogram.h
dlib/image_transforms/equalize_histogram.h
+39
-0
equalize_histogram_abstract.h
dlib/image_transforms/equalize_histogram_abstract.h
+32
-1
segment_image.h
dlib/image_transforms/segment_image.h
+240
-0
segment_image_abstract.h
dlib/image_transforms/segment_image_abstract.h
+38
-0
No files found.
dlib/image_transforms/equalize_histogram.h
View file @
e1458ec8
...
...
@@ -14,6 +14,45 @@ namespace dlib
// ---------------------------------------------------------------------------------------
template
<
typename
in_image_type
,
long
R
,
long
C
,
typename
MM
>
void
get_histogram
(
const
in_image_type
&
in_img_
,
matrix
<
unsigned
long
,
R
,
C
,
MM
>&
hist
,
size_t
hist_size
)
{
typedef
typename
image_traits
<
in_image_type
>::
pixel_type
pixel_type
;
COMPILE_TIME_ASSERT
(
pixel_traits
<
pixel_type
>::
is_unsigned
==
true
);
// make sure hist is the right size
if
(
R
==
1
)
hist
.
set_size
(
1
,
hist_size
);
else
hist
.
set_size
(
hist_size
,
1
);
set_all_elements
(
hist
,
0
);
const_image_view
<
in_image_type
>
in_img
(
in_img_
);
// compute the histogram
for
(
long
r
=
0
;
r
<
in_img
.
nr
();
++
r
)
{
for
(
long
c
=
0
;
c
<
in_img
.
nc
();
++
c
)
{
auto
p
=
get_pixel_intensity
(
in_img
[
r
][
c
]);
if
(
p
<
hist_size
)
++
hist
(
p
);
}
}
}
// ----------------------------------------------------------------------------------------
template
<
typename
in_image_type
,
long
R
,
...
...
dlib/image_transforms/equalize_histogram_abstract.h
View file @
e1458ec8
...
...
@@ -70,7 +70,7 @@ namespace dlib
- Let pixel_type denote the type of pixel in in_img, then we must have:
- pixel_traits<pixel_type>::is_unsigned == true
- pixel_traits<pixel_type>::max() <= 65535
- hist must be capable of representing a column vector of length
- hist must be capable of representing a column
or row
vector of length
pixel_traits<typename in_image_type>::max(). I.e. if R and C are nonzero
then they must be values that don't conflict with the previous sentence.
ensures
...
...
@@ -82,6 +82,37 @@ namespace dlib
in in_img
!*/
// ----------------------------------------------------------------------------------------
template
<
typename
in_image_type
,
long
R
,
long
C
,
typename
MM
>
void
get_histogram
(
const
in_image_type
&
in_img
,
matrix
<
unsigned
long
,
R
,
C
,
MM
>&
hist
,
size_t
hist_size
);
/*!
requires
- in_image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
- Let pixel_type denote the type of pixel in in_img, then we must have:
- pixel_traits<pixel_type>::is_unsigned == true
- hist must be capable of representing a column or row vector of length
hist_size. I.e. if R and C are nonzero then they must be values that don't
conflict with the previous sentence.
ensures
- #hist.size() == hist_size
- #hist.nc() == 1 || #hist.nr() == 1 (i.e. hist is either a row or column vector)
- #hist == the histogram for in_img, except pixel values >= hist_size are
ignored. I.e. it is the case that for all valid i:
- hist(i) == the number of times a pixel with intensity i appears
in in_img
!*/
// ---------------------------------------------------------------------------------------
}
...
...
dlib/image_transforms/segment_image.h
View file @
e1458ec8
...
...
@@ -8,6 +8,7 @@
#include <vector>
#include "../geometry.h"
#include "../disjoint_subsets.h"
#include "assign_image.h"
#include "../set.h"
namespace
dlib
...
...
@@ -722,6 +723,245 @@ namespace dlib
find_candidate_object_locations
(
in_img
,
rects
,
linspace
(
50
,
200
,
3
));
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
namespace
impl
{
template
<
typename
T
>
void
mbd_raster_scan
(
const
T
&
img
,
array2d
<
rgb_pixel
>&
dist
,
array2d
<
rgb_pixel
>&
lower
,
array2d
<
rgb_pixel
>&
upper
,
bool
do_left_right_scans
)
{
auto
area
=
shrink_rect
(
get_rect
(
img
),
1
);
auto
check_neighbor
=
[
&
](
long
r
,
long
c
,
long
neighbor_r
,
long
neighbor_c
)
{
auto
l
=
std
::
min
(
lower
[
neighbor_r
][
neighbor_c
].
red
,
img
[
r
][
c
].
red
);
auto
u
=
std
::
max
(
upper
[
neighbor_r
][
neighbor_c
].
red
,
img
[
r
][
c
].
red
);
auto
d
=
u
-
l
;
if
(
d
<
dist
[
r
][
c
].
red
)
{
lower
[
r
][
c
].
red
=
l
;
upper
[
r
][
c
].
red
=
u
;
dist
[
r
][
c
].
red
=
d
;
}
l
=
std
::
min
(
lower
[
neighbor_r
][
neighbor_c
].
green
,
img
[
r
][
c
].
green
);
u
=
std
::
max
(
upper
[
neighbor_r
][
neighbor_c
].
green
,
img
[
r
][
c
].
green
);
d
=
u
-
l
;
if
(
d
<
dist
[
r
][
c
].
green
)
{
lower
[
r
][
c
].
green
=
l
;
upper
[
r
][
c
].
green
=
u
;
dist
[
r
][
c
].
green
=
d
;
}
l
=
std
::
min
(
lower
[
neighbor_r
][
neighbor_c
].
blue
,
img
[
r
][
c
].
blue
);
u
=
std
::
max
(
upper
[
neighbor_r
][
neighbor_c
].
blue
,
img
[
r
][
c
].
blue
);
d
=
u
-
l
;
if
(
d
<
dist
[
r
][
c
].
blue
)
{
lower
[
r
][
c
].
blue
=
l
;
upper
[
r
][
c
].
blue
=
u
;
dist
[
r
][
c
].
blue
=
d
;
}
};
// scan top to bottom
for
(
long
r
=
area
.
top
();
r
<=
area
.
bottom
();
++
r
)
{
for
(
long
c
=
area
.
left
();
c
<=
area
.
right
();
++
c
)
{
check_neighbor
(
r
,
c
,
r
-
1
,
c
);
check_neighbor
(
r
,
c
,
r
,
c
-
1
);
}
}
// scan bottom to top
for
(
long
r
=
area
.
bottom
();
r
>=
area
.
top
();
--
r
)
{
for
(
long
c
=
area
.
right
();
c
>=
area
.
left
();
--
c
)
{
check_neighbor
(
r
,
c
,
r
+
1
,
c
);
check_neighbor
(
r
,
c
,
r
,
c
+
1
);
}
}
if
(
do_left_right_scans
)
{
// scan left to right
for
(
long
c
=
area
.
left
();
c
<=
area
.
right
();
++
c
)
{
for
(
long
r
=
area
.
top
();
r
<=
area
.
bottom
();
++
r
)
{
check_neighbor
(
r
,
c
,
r
-
1
,
c
);
check_neighbor
(
r
,
c
,
r
,
c
-
1
);
}
}
// scan right to left
for
(
long
c
=
area
.
right
();
c
>=
area
.
left
();
--
c
)
{
for
(
long
r
=
area
.
bottom
();
r
>=
area
.
top
();
--
r
)
{
check_neighbor
(
r
,
c
,
r
+
1
,
c
);
check_neighbor
(
r
,
c
,
r
,
c
+
1
);
}
}
}
}
// ------------------------------------------------------------------------------------
template
<
typename
T
,
typename
U
,
typename
pixel_type
>
void
mbd_raster_scan
(
const
T
&
img
,
U
&
dist
,
array2d
<
pixel_type
>&
lower
,
array2d
<
pixel_type
>&
upper
,
bool
do_left_right_scans
)
{
auto
area
=
shrink_rect
(
get_rect
(
img
),
1
);
auto
check_neighbor
=
[
&
](
long
r
,
long
c
,
long
neighbor_r
,
long
neighbor_c
)
{
auto
l
=
std
::
min
(
lower
[
neighbor_r
][
neighbor_c
],
get_pixel_intensity
(
img
[
r
][
c
]));
auto
u
=
std
::
max
(
upper
[
neighbor_r
][
neighbor_c
],
get_pixel_intensity
(
img
[
r
][
c
]));
auto
d
=
u
-
l
;
if
(
d
<
dist
[
r
][
c
])
{
lower
[
r
][
c
]
=
l
;
upper
[
r
][
c
]
=
u
;
dist
[
r
][
c
]
=
d
;
}
};
// scan top to bottom
for
(
long
r
=
area
.
top
();
r
<=
area
.
bottom
();
++
r
)
{
for
(
long
c
=
area
.
left
();
c
<=
area
.
right
();
++
c
)
{
check_neighbor
(
r
,
c
,
r
-
1
,
c
);
check_neighbor
(
r
,
c
,
r
,
c
-
1
);
}
}
// scan bottom to top
for
(
long
r
=
area
.
bottom
();
r
>=
area
.
top
();
--
r
)
{
for
(
long
c
=
area
.
right
();
c
>=
area
.
left
();
--
c
)
{
check_neighbor
(
r
,
c
,
r
+
1
,
c
);
check_neighbor
(
r
,
c
,
r
,
c
+
1
);
}
}
if
(
do_left_right_scans
)
{
// scan left to right
for
(
long
c
=
area
.
left
();
c
<=
area
.
right
();
++
c
)
{
for
(
long
r
=
area
.
top
();
r
<=
area
.
bottom
();
++
r
)
{
check_neighbor
(
r
,
c
,
r
-
1
,
c
);
check_neighbor
(
r
,
c
,
r
,
c
-
1
);
}
}
// scan right to left
for
(
long
c
=
area
.
right
();
c
>=
area
.
left
();
--
c
)
{
for
(
long
r
=
area
.
bottom
();
r
>=
area
.
top
();
--
r
)
{
check_neighbor
(
r
,
c
,
r
+
1
,
c
);
check_neighbor
(
r
,
c
,
r
,
c
+
1
);
}
}
}
}
}
// ----------------------------------------------------------------------------------------
template
<
typename
in_image_type
,
typename
out_image_type
>
typename
disable_if_c
<
is_rgb_image
<
in_image_type
>::
value
>::
type
min_barrier_distance
(
const
in_image_type
&
img_
,
out_image_type
&
dist_
,
size_t
iterations
=
10
,
bool
do_left_right_scans
=
true
)
{
DLIB_CASSERT
(
iterations
>
0
);
static_assert
(
pixel_traits
<
typename
image_traits
<
out_image_type
>::
pixel_type
>::
grayscale
,
"min_barrier_distance() requires a grayscale output image."
);
const_image_view
<
in_image_type
>
img
(
img_
);
image_view
<
out_image_type
>
dist
(
dist_
);
typedef
typename
image_traits
<
in_image_type
>::
pixel_type
pixel_type
;
typedef
typename
pixel_traits
<
pixel_type
>::
basic_pixel_type
basic_pixel_type
;
dist
.
set_size
(
img
.
nr
(),
img
.
nc
());
array2d
<
basic_pixel_type
>
lower
,
upper
;
assign_all_pixels
(
dist
,
pixel_traits
<
pixel_type
>::
max
());
zero_border_pixels
(
dist
,
1
,
1
);
assign_image
(
lower
,
img
);
assign_image
(
upper
,
img
);
for
(
size_t
i
=
0
;
i
<
iterations
;
++
i
)
impl
::
mbd_raster_scan
(
img
,
dist
,
lower
,
upper
,
do_left_right_scans
);
}
// ----------------------------------------------------------------------------------------
template
<
typename
in_image_type
,
typename
out_image_type
>
typename
enable_if_c
<
is_rgb_image
<
in_image_type
>::
value
>::
type
min_barrier_distance
(
const
in_image_type
&
img_
,
out_image_type
&
dist_
,
size_t
iterations
=
10
,
bool
do_left_right_scans
=
true
)
{
DLIB_CASSERT
(
iterations
>
0
);
static_assert
(
pixel_traits
<
typename
image_traits
<
out_image_type
>::
pixel_type
>::
grayscale
,
"min_barrier_distance() requires a grayscale output image."
);
const_image_view
<
in_image_type
>
img
(
img_
);
image_view
<
out_image_type
>
dist
(
dist_
);
typedef
typename
image_traits
<
in_image_type
>::
pixel_type
pixel_type
;
array2d
<
rgb_pixel
>
temp_dist
(
img
.
nr
(),
img
.
nc
());
array2d
<
rgb_pixel
>
lower
,
upper
;
assign_all_pixels
(
temp_dist
,
pixel_traits
<
pixel_type
>::
max
());
zero_border_pixels
(
temp_dist
,
1
,
1
);
assign_image
(
lower
,
img
);
assign_image
(
upper
,
img
);
for
(
size_t
i
=
0
;
i
<
iterations
;
++
i
)
impl
::
mbd_raster_scan
(
img
,
temp_dist
,
lower
,
upper
,
do_left_right_scans
);
// convert to grayscale for output.
assign_image
(
dist
,
temp_dist
);
}
// ----------------------------------------------------------------------------------------
}
...
...
dlib/image_transforms/segment_image_abstract.h
View file @
e1458ec8
...
...
@@ -117,6 +117,44 @@ namespace dlib
instances.
!*/
// ----------------------------------------------------------------------------------------
template
<
typename
in_image_type
,
typename
out_image_type
>
void
min_barrier_distance
(
const
in_image_type
&
img
,
out_image_type
&
dist
,
size_t
iterations
=
10
,
bool
do_left_right_scans
=
true
);
/*!
requires
- in_image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
- out_image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
- pixel_traits<typename image_traits<out_image_type>::pixel_type>::grayscale == true
(i.e. dist must be a grayscale image)
- iterations > 0
ensures
- This function implements the salient object detection method described in the paper:
"Minimum barrier salient object detection at 80 fps" by Zhang, Jianming, et al.
In particular, we compute the minimum barrier distance between the borders of
the image and all the other pixels. The result is stored in dist. Note that
the paper talks about a bunch of other things you could do beyond computing
the minimum barrier distance, but this function doesn't do any of that. It's
just the vanilla MBD.
- We will perform iterations iterations of MBD passes over the image. Larger
values might give better results but run slower.
- During each MBD iteration we make raster scans over the image. These pass
from top->bottom, bottom->top, left->right, and right->left. If
do_left_right_scans==false then the left/right passes are not executed.
Skipping them makes the algorithm about 2x faster but might reduce the
quality of the output.
!*/
// ----------------------------------------------------------------------------------------
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment