Commit e1458ec8 authored by Davis King's avatar Davis King

Added min_barrier_distance() and also a new overload of get_histogram().

parent 233ae95c
......@@ -14,6 +14,45 @@ namespace dlib
// ---------------------------------------------------------------------------------------
template <
typename in_image_type,
long R,
long C,
typename MM
>
void get_histogram (
const in_image_type& in_img_,
matrix<unsigned long,R,C,MM>& hist,
size_t hist_size
)
{
typedef typename image_traits<in_image_type>::pixel_type pixel_type;
COMPILE_TIME_ASSERT( pixel_traits<pixel_type>::is_unsigned == true );
// make sure hist is the right size
if (R == 1)
hist.set_size(1,hist_size);
else
hist.set_size(hist_size,1);
set_all_elements(hist,0);
const_image_view<in_image_type> in_img(in_img_);
// compute the histogram
for (long r = 0; r < in_img.nr(); ++r)
{
for (long c = 0; c < in_img.nc(); ++c)
{
auto p = get_pixel_intensity(in_img[r][c]);
if (p < hist_size)
++hist(p);
}
}
}
// ----------------------------------------------------------------------------------------
template <
typename in_image_type,
long R,
......
......@@ -70,7 +70,7 @@ namespace dlib
- Let pixel_type denote the type of pixel in in_img, then we must have:
- pixel_traits<pixel_type>::is_unsigned == true
- pixel_traits<pixel_type>::max() <= 65535
- hist must be capable of representing a column vector of length
- hist must be capable of representing a column or row vector of length
pixel_traits<typename in_image_type>::max(). I.e. if R and C are nonzero
then they must be values that don't conflict with the previous sentence.
ensures
......@@ -82,6 +82,37 @@ namespace dlib
in in_img
!*/
// ----------------------------------------------------------------------------------------
template <
typename in_image_type,
long R,
long C,
typename MM
>
void get_histogram (
const in_image_type& in_img,
matrix<unsigned long,R,C,MM>& hist,
size_t hist_size
);
/*!
requires
- in_image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
- Let pixel_type denote the type of pixel in in_img, then we must have:
- pixel_traits<pixel_type>::is_unsigned == true
- hist must be capable of representing a column or row vector of length
hist_size. I.e. if R and C are nonzero then they must be values that don't
conflict with the previous sentence.
ensures
- #hist.size() == hist_size
- #hist.nc() == 1 || #hist.nr() == 1 (i.e. hist is either a row or column vector)
- #hist == the histogram for in_img, except pixel values >= hist_size are
ignored. I.e. it is the case that for all valid i:
- hist(i) == the number of times a pixel with intensity i appears
in in_img
!*/
// ---------------------------------------------------------------------------------------
}
......
......@@ -8,6 +8,7 @@
#include <vector>
#include "../geometry.h"
#include "../disjoint_subsets.h"
#include "assign_image.h"
#include "../set.h"
namespace dlib
......@@ -722,6 +723,245 @@ namespace dlib
find_candidate_object_locations(in_img, rects, linspace(50, 200, 3));
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
namespace impl
{
template <typename T>
void mbd_raster_scan(
const T& img,
array2d<rgb_pixel>& dist,
array2d<rgb_pixel>& lower,
array2d<rgb_pixel>& upper,
bool do_left_right_scans
)
{
auto area = shrink_rect(get_rect(img),1);
auto check_neighbor = [&](long r, long c, long neighbor_r, long neighbor_c)
{
auto l = std::min(lower[neighbor_r][neighbor_c].red, img[r][c].red);
auto u = std::max(upper[neighbor_r][neighbor_c].red, img[r][c].red);
auto d = u-l;
if (d < dist[r][c].red)
{
lower[r][c].red = l;
upper[r][c].red = u;
dist[r][c].red = d;
}
l = std::min(lower[neighbor_r][neighbor_c].green, img[r][c].green);
u = std::max(upper[neighbor_r][neighbor_c].green, img[r][c].green);
d = u-l;
if (d < dist[r][c].green)
{
lower[r][c].green = l;
upper[r][c].green = u;
dist[r][c].green = d;
}
l = std::min(lower[neighbor_r][neighbor_c].blue, img[r][c].blue);
u = std::max(upper[neighbor_r][neighbor_c].blue, img[r][c].blue);
d = u-l;
if (d < dist[r][c].blue)
{
lower[r][c].blue = l;
upper[r][c].blue = u;
dist[r][c].blue = d;
}
};
// scan top to bottom
for (long r = area.top(); r <= area.bottom(); ++r)
{
for (long c = area.left(); c <= area.right(); ++c)
{
check_neighbor(r,c, r-1,c);
check_neighbor(r,c, r,c-1);
}
}
// scan bottom to top
for (long r = area.bottom(); r >= area.top(); --r)
{
for (long c = area.right(); c >= area.left(); --c)
{
check_neighbor(r,c, r+1,c);
check_neighbor(r,c, r,c+1);
}
}
if (do_left_right_scans)
{
// scan left to right
for (long c = area.left(); c <= area.right(); ++c)
{
for (long r = area.top(); r <= area.bottom(); ++r)
{
check_neighbor(r,c, r-1,c);
check_neighbor(r,c, r,c-1);
}
}
// scan right to left
for (long c = area.right(); c >= area.left(); --c)
{
for (long r = area.bottom(); r >= area.top(); --r)
{
check_neighbor(r,c, r+1,c);
check_neighbor(r,c, r,c+1);
}
}
}
}
// ------------------------------------------------------------------------------------
template <typename T, typename U, typename pixel_type>
void mbd_raster_scan(
const T& img,
U& dist,
array2d<pixel_type>& lower,
array2d<pixel_type>& upper,
bool do_left_right_scans
)
{
auto area = shrink_rect(get_rect(img),1);
auto check_neighbor = [&](long r, long c, long neighbor_r, long neighbor_c)
{
auto l = std::min(lower[neighbor_r][neighbor_c], get_pixel_intensity(img[r][c]));
auto u = std::max(upper[neighbor_r][neighbor_c], get_pixel_intensity(img[r][c]));
auto d = u-l;
if (d < dist[r][c])
{
lower[r][c] = l;
upper[r][c] = u;
dist[r][c] = d;
}
};
// scan top to bottom
for (long r = area.top(); r <= area.bottom(); ++r)
{
for (long c = area.left(); c <= area.right(); ++c)
{
check_neighbor(r,c, r-1,c);
check_neighbor(r,c, r,c-1);
}
}
// scan bottom to top
for (long r = area.bottom(); r >= area.top(); --r)
{
for (long c = area.right(); c >= area.left(); --c)
{
check_neighbor(r,c, r+1,c);
check_neighbor(r,c, r,c+1);
}
}
if (do_left_right_scans)
{
// scan left to right
for (long c = area.left(); c <= area.right(); ++c)
{
for (long r = area.top(); r <= area.bottom(); ++r)
{
check_neighbor(r,c, r-1,c);
check_neighbor(r,c, r,c-1);
}
}
// scan right to left
for (long c = area.right(); c >= area.left(); --c)
{
for (long r = area.bottom(); r >= area.top(); --r)
{
check_neighbor(r,c, r+1,c);
check_neighbor(r,c, r,c+1);
}
}
}
}
}
// ----------------------------------------------------------------------------------------
template <
typename in_image_type,
typename out_image_type
>
typename disable_if_c<is_rgb_image<in_image_type>::value>::type min_barrier_distance(
const in_image_type& img_,
out_image_type& dist_,
size_t iterations = 10,
bool do_left_right_scans = true
)
{
DLIB_CASSERT(iterations > 0);
static_assert(pixel_traits<typename image_traits<out_image_type>::pixel_type>::grayscale,
"min_barrier_distance() requires a grayscale output image.");
const_image_view<in_image_type> img(img_);
image_view<out_image_type> dist(dist_);
typedef typename image_traits<in_image_type>::pixel_type pixel_type;
typedef typename pixel_traits<pixel_type>::basic_pixel_type basic_pixel_type;
dist.set_size(img.nr(), img.nc());
array2d<basic_pixel_type> lower, upper;
assign_all_pixels(dist, pixel_traits<pixel_type>::max());
zero_border_pixels(dist,1,1);
assign_image(lower, img);
assign_image(upper, img);
for (size_t i = 0; i < iterations; ++i)
impl::mbd_raster_scan(img, dist, lower, upper, do_left_right_scans);
}
// ----------------------------------------------------------------------------------------
template <
typename in_image_type,
typename out_image_type
>
typename enable_if_c<is_rgb_image<in_image_type>::value>::type min_barrier_distance(
const in_image_type& img_,
out_image_type& dist_,
size_t iterations = 10,
bool do_left_right_scans = true
)
{
DLIB_CASSERT(iterations > 0);
static_assert(pixel_traits<typename image_traits<out_image_type>::pixel_type>::grayscale,
"min_barrier_distance() requires a grayscale output image.");
const_image_view<in_image_type> img(img_);
image_view<out_image_type> dist(dist_);
typedef typename image_traits<in_image_type>::pixel_type pixel_type;
array2d<rgb_pixel> temp_dist(img.nr(), img.nc());
array2d<rgb_pixel> lower, upper;
assign_all_pixels(temp_dist, pixel_traits<pixel_type>::max());
zero_border_pixels(temp_dist,1,1);
assign_image(lower, img);
assign_image(upper, img);
for (size_t i = 0; i < iterations; ++i)
impl::mbd_raster_scan(img, temp_dist, lower, upper, do_left_right_scans);
// convert to grayscale for output.
assign_image(dist,temp_dist);
}
// ----------------------------------------------------------------------------------------
}
......
......@@ -117,6 +117,44 @@ namespace dlib
instances.
!*/
// ----------------------------------------------------------------------------------------
template <
typename in_image_type,
typename out_image_type
>
void min_barrier_distance(
const in_image_type& img,
out_image_type& dist,
size_t iterations = 10,
bool do_left_right_scans = true
);
/*!
requires
- in_image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
- out_image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
- pixel_traits<typename image_traits<out_image_type>::pixel_type>::grayscale == true
(i.e. dist must be a grayscale image)
- iterations > 0
ensures
- This function implements the salient object detection method described in the paper:
"Minimum barrier salient object detection at 80 fps" by Zhang, Jianming, et al.
In particular, we compute the minimum barrier distance between the borders of
the image and all the other pixels. The result is stored in dist. Note that
the paper talks about a bunch of other things you could do beyond computing
the minimum barrier distance, but this function doesn't do any of that. It's
just the vanilla MBD.
- We will perform iterations iterations of MBD passes over the image. Larger
values might give better results but run slower.
- During each MBD iteration we make raster scans over the image. These pass
from top->bottom, bottom->top, left->right, and right->left. If
do_left_right_scans==false then the left/right passes are not executed.
Skipping them makes the algorithm about 2x faster but might reduce the
quality of the output.
!*/
// ----------------------------------------------------------------------------------------
}
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment