Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
e1e4d6df
Commit
e1e4d6df
authored
Nov 21, 2015
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added cuda implementations of a bunch of functions.
parent
ca11ff49
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
205 additions
and
7 deletions
+205
-7
cuda_dlib.cu
dlib/dnn/cuda_dlib.cu
+205
-7
No files found.
dlib/dnn/cuda_dlib.cu
View file @
e1e4d6df
...
...
@@ -4,26 +4,224 @@
#include "cuda_utils.h"
#include "cuda_dlib.h"
namespace dlib
{
namespace cuda
{
// ------------------------------------------------------------------------------------
// -----------------------------------------------------------------------------------
__global__ void _cuda_multiply(float* d, const float* s, size_t n)
{
for (auto i : grid_stride_range(0, n))
{
d[i] *= s[i];
}
}
void multiply (
tensor& dest,
const tensor& src
)
{
DLIB_CASSERT(dest.size()==src.size(),"");
_cuda_multiply<<<512,512>>>(dest.device(), src.device(), src.size());
}
// -----------------------------------------------------------------------------------
__global__ void _cuda_affine_transform(float* d, const float* s, size_t n, float A, float B)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = A*s[i] + B;
}
}
void affine_transform(
tensor& dest,
const tensor& src,
const float A,
const float B
)
{
DLIB_CASSERT(dest.size()==src.size(),"");
_cuda_affine_transform<<<512,512>>>(dest.device(), src.device(), src.size(), A, B);
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_affine_transform(float* d, const float* s1, const float* s2, size_t n, float A, float B, float C)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = A*s1[i] + B*s2[i] + C;
}
}
void affine_transform(
tensor& dest,
const tensor& src1,
const tensor& src2,
const float A,
const float B,
const float C
)
{
DLIB_CASSERT(dest.size()==src1.size(),"");
DLIB_CASSERT(dest.size()==src2.size(),"");
_cuda_affine_transform<<<512,512>>>(dest.device(), src1.device(), src2.device(), dest.size(), A, B, C);
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_affine_transform(
float* d, const float* s1, const float* s2, const float* s3, size_t n, float A, float B, float C, float D
)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = A*s1[i] + B*s2[i] + C*s3[i] + D;
}
}
void affine_transform(
tensor& dest,
const tensor& src1,
const tensor& src2,
const tensor& src3,
const float A,
const float B,
const float C,
const float D
)
{
DLIB_CASSERT(dest.size()==src1.size(),"");
DLIB_CASSERT(dest.size()==src2.size(),"");
DLIB_CASSERT(dest.size()==src3.size(),"");
_cuda_affine_transform<<<512,512>>>(dest.device(), src1.device(),
src2.device(), src3.device(), dest.size(), A, B, C, D);
}
// -----------------------------------------------------------------------------------
__global__ void _cuda_affine_transform2(float* d, const float* s, size_t n, const float* A, const float* B)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = A[i]*s[i] + B[i];
}
}
__global__ void _cuda_affine_transform3(float* d, const float* s, size_t n, const float* A, const float* B, size_t bs)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = A[i%bs]*s[i] + B[i%bs];
}
}
void affine_transform(
resizable_tensor& dest,
const tensor& src,
const tensor& A,
const tensor& B
)
{
DLIB_CASSERT(
((A.num_samples()==1 && B.num_samples()==1) ||
(A.num_samples()==src.num_samples() && B.num_samples()==src.num_samples())) &&
A.nr()==B.nr() && B.nr()==src.nr() &&
A.nc()==B.nc() && B.nc()==src.nc() &&
A.k() ==B.k() && B.k()==src.k(),"");
dest.copy_size(src);
if (A.num_samples() == 1)
{
_cuda_affine_transform3<<<512,512>>>(dest.device(), src.device(), src.size(), A.device(), B.device(), A.size());
}
else
{
_cuda_affine_transform2<<<512,512>>>(dest.device(), src.device(), src.size(), A.device(), B.device());
}
}
// -----------------------------------------------------------------------------------
void batch_normalize (
resizable_tensor& dest,
resizable_tensor& means,
resizable_tensor& invstds,
const tensor& src,
const tensor& gamma,
const tensor& beta
)
{
// TODO
DLIB_CASSERT(false,"");
}
void batch_normalize_gradient::operator() (
const tensor& gradient_input,
const tensor& means,
const tensor& invstds,
const tensor& src,
const tensor& gamma,
tensor& src_grad,
tensor& gamma_grad,
tensor& beta_grad
)
{
// TODO
DLIB_CASSERT(false,"");
}
// ----------------------------------------------------------------------------------------
void batch_normalize_conv (
resizable_tensor& dest,
resizable_tensor& means,
resizable_tensor& invstds,
const tensor& src,
const tensor& gamma,
const tensor& beta
)
{
// TODO
DLIB_CASSERT(false,"");
}
void batch_normalize_conv_gradient::operator() (
const tensor& gradient_input,
const tensor& means,
const tensor& invstds,
const tensor& src,
const tensor& gamma,
tensor& src_grad,
tensor& gamma_grad,
tensor& beta_grad
)
{
// TODO
DLIB_CASSERT(false,"");
}
// -----------------------------------------------------------------------------------
__global__ void
cuda_add_arrays(const float* a, const float* b, float* out, size_t n
)
__global__ void
_cuda_threshold(float* d, size_t n, float thresh
)
{
for (auto i : grid_stride_range(0, n))
{
out[i] += a[i]+b[i]
;
d[i] = d[i]>thresh ? 1:0
;
}
}
void add_arrays(const gpu_data& a, const gpu_data& b, gpu_data& out)
void threshold (
tensor& data,
float thresh
)
{
DLIB_CASSERT(a.size() == b.size(),"");
out.set_size(a.size());
cuda_add_arrays<<<512,512>>>(a.device(), b.device(), out.device(), a.size());
_cuda_threshold<<<512,512>>>(data.device(), data.size(), thresh);
}
// ------------------------------------------------------------------------------------
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment