Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
e2d78d3a
Commit
e2d78d3a
authored
Mar 11, 2012
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Filled out the spec for the kalman_filter object.
parent
bc7a2971
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
122 additions
and
102 deletions
+122
-102
kalman_filter_abstract.h
dlib/filtering/kalman_filter_abstract.h
+122
-102
No files found.
dlib/filtering/kalman_filter_abstract.h
View file @
e2d78d3a
...
...
@@ -3,6 +3,8 @@
#undef DLIB_KALMAN_FiLTER_ABSTRACT_H__
#ifdef DLIB_KALMAN_FiLTER_ABSTRACT_H__
#include "../serialize.h"
#include "../matrix.h"
namespace
dlib
{
...
...
@@ -23,6 +25,14 @@ namespace dlib
measurements > 0
WHAT THIS OBJECT REPRESENTS
This object implements the Kalman filter, which is a tool for
recursively estimating the state of a process given measurements
related to that process. To use this tool you will have to
be familiar with the workings of the Kalman filter. An excellent
introduction can be found in the paper:
An Introduction to the Kalman Filter
by Greg Welch and Gary Bishop
!*/
public
:
...
...
@@ -39,125 +49,135 @@ namespace dlib
- #get_current_estimation_error_covariance() == the identity matrix
!*/
void
set_observation_model
(
const
matrix
<
double
,
measurements
,
states
>&
H_
)
{
H
=
H_
;
}
void
set_transition_model
(
const
matrix
<
double
,
states
,
states
>&
A_
)
{
A
=
A_
;
}
void
set_process_noise
(
const
matrix
<
double
,
states
,
states
>&
Q_
)
{
Q
=
Q_
;
}
void
set_measurement_noise
(
const
matrix
<
double
,
measurements
,
measurements
>&
R_
)
{
R
=
R_
;
}
void
set_estimation_error_covariance
(
const
matrix
<
double
,
states
,
states
>&
P_
)
{
P
=
P_
;
}
void
set_observation_model
(
const
matrix
<
double
,
measurements
,
states
>&
H
);
/*!
ensures
- #get_observation_model() == H
!*/
void
set_transition_model
(
const
matrix
<
double
,
states
,
states
>&
A
);
/*!
ensures
- #get_transition_model() == A
!*/
void
set_process_noise
(
const
matrix
<
double
,
states
,
states
>&
Q
);
/*!
ensures
- #get_process_noise() == Q
!*/
void
set_measurement_noise
(
const
matrix
<
double
,
measurements
,
measurements
>&
R
);
/*!
ensures
- #get_measurement_noise() == R
!*/
void
set_estimation_error_covariance
(
const
matrix
<
double
,
states
,
states
>&
P
);
/*!
ensures
- #get_current_estimation_error_covariance() == P
(Note that you should only set this before you start filtering
since the Kalman filter will maintain the value of P on its own.
So only set this during initialization unless you are sure you
understand what you are doing.)
!*/
const
matrix
<
double
,
measurements
,
states
>&
get_observation_model
(
)
const
{
return
H
;
}
)
const
;
/*!
ensures
- Returns the matrix "H" which relates process states x to measurements z.
The relation is linear, therefore, z = H*x. That is, multiplying a
state by H gives the measurement you expect to observe for that state.
!*/
const
matrix
<
double
,
states
,
states
>&
get_transition_model
(
)
const
{
return
A
;
}
)
const
;
/*!
ensures
- Returns the matrix "A" which determines how process states change over time.
The relation is linear, therefore, given a state vector x, the value you
expect it to have at the next time step is A*x.
!*/
const
matrix
<
double
,
states
,
states
>&
get_process_noise
(
)
const
{
return
Q
;
}
)
const
;
/*!
ensures
- returns the process noise covariance matrix. You can think of this
covariance matrix as a measure of how wrong the assumption of
linear state transitions is.
!*/
const
matrix
<
double
,
measurements
,
measurements
>&
get_measurement_noise
(
)
const
{
return
R
;
}
)
const
;
/*!
ensures
- returns the measurement noise covariance matrix. That is, when we
measure a state x we only obtain H*x corrupted by Gaussian noise.
The measurement noise is the covariance matrix of this Gaussian
noise which corrupts our measurements.
!*/
void
update
(
)
{
// propagate estimation error covariance forward
P
=
A
*
P
*
trans
(
A
)
+
Q
;
// propagate state forward
x
=
xb
;
xb
=
A
*
x
;
}
void
update
(
const
matrix
<
double
,
measurements
,
1
>&
z
)
{
// propagate estimation error covariance forward
P
=
A
*
P
*
trans
(
A
)
+
Q
;
// compute Kalman gain matrix
const
matrix
<
double
,
states
,
measurements
>
K
=
P
*
trans
(
H
)
*
pinv
(
H
*
P
*
trans
(
H
)
+
R
);
if
(
got_first_meas
)
{
const
matrix
<
double
,
measurements
,
1
>
res
=
z
-
H
*
xb
;
// correct the current state estimate
x
=
xb
+
K
*
res
;
}
else
{
// Since we don't have a previous state estimate at the start of filtering,
// we will just set the current state to whatever is indicated by the measurement
x
=
pinv
(
H
)
*
z
;
got_first_meas
=
true
;
}
// propagate state forward in time
xb
=
A
*
x
;
// update estimation error covariance since we got a measurement.
P
=
(
identity_matrix
<
double
,
states
>
()
-
K
*
H
)
*
P
;
}
);
/*!
ensures
- propagates the current state estimate forward in time one
time step. In particular:
- #get_current_state() == get_predicted_next_state()
- #get_predicted_next_state() == get_transition_model()*get_current_state()
- #get_current_estimation_error_covariance() == the propagated value of this covariance matrix
!*/
void
update
(
const
matrix
<
double
,
measurements
,
1
>&
z
);
/*!
ensures
- propagates the current state estimate forward in time one time step.
Also applies a correction based on the given measurement z. In particular:
- #get_current_state(), #get_predicted_next_state(), and
#get_current_estimation_error_covariance() are updated using the
Kalman filter method based on the new measurement in z.
!*/
const
matrix
<
double
,
states
,
1
>&
get_current_state
(
)
const
{
return
x
;
}
)
const
;
/*!
ensures
- returns the current estimate of the state of the process. This
estimate is based on all the measurements supplied to the update()
method.
!*/
const
matrix
<
double
,
states
,
1
>&
get_predicted_next_state
(
)
const
{
return
xb
;
}
)
const
;
/*!
ensures
- returns the next expected value of the process state.
- Specifically, returns get_transition_model()*get_current_state()
!*/
const
matrix
<
double
,
states
,
states
>&
get_current_estimation_error_covariance
(
)
const
{
return
P
;
}
friend
inline
void
serialize
(
const
kalman_filter
&
item
,
std
::
ostream
&
out
)
{
int
version
=
1
;
serialize
(
version
,
out
);
serialize
(
item
.
got_first_meas
,
out
);
serialize
(
item
.
x
,
out
);
serialize
(
item
.
xb
,
out
);
serialize
(
item
.
P
,
out
);
serialize
(
item
.
H
,
out
);
serialize
(
item
.
A
,
out
);
serialize
(
item
.
Q
,
out
);
serialize
(
item
.
R
,
out
);
}
friend
inline
void
deserialize
(
kalman_filter
&
item
,
std
::
istream
&
in
)
{
int
version
=
0
;
deserialize
(
version
,
in
);
if
(
version
!=
1
)
throw
dlib
::
serialization_error
(
"Unknown version number found while deserializing kalman_filter object."
);
deserialize
(
item
.
got_first_meas
,
in
);
deserialize
(
item
.
x
,
in
);
deserialize
(
item
.
xb
,
in
);
deserialize
(
item
.
P
,
in
);
deserialize
(
item
.
H
,
in
);
deserialize
(
item
.
A
,
in
);
deserialize
(
item
.
Q
,
in
);
deserialize
(
item
.
R
,
in
);
}
private
:
bool
got_first_meas
;
matrix
<
double
,
states
,
1
>
x
,
xb
;
matrix
<
double
,
states
,
states
>
P
;
matrix
<
double
,
measurements
,
states
>
H
;
matrix
<
double
,
states
,
states
>
A
;
matrix
<
double
,
states
,
states
>
Q
;
matrix
<
double
,
measurements
,
measurements
>
R
;
)
const
;
/*!
ensures
- returns the current state error estimation covariance matrix.
This matrix captures our uncertainty about the value of get_current_state().
!*/
};
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment