Commit e2d78d3a authored by Davis King's avatar Davis King

Filled out the spec for the kalman_filter object.

parent bc7a2971
......@@ -3,6 +3,8 @@
#undef DLIB_KALMAN_FiLTER_ABSTRACT_H__
#ifdef DLIB_KALMAN_FiLTER_ABSTRACT_H__
#include "../serialize.h"
#include "../matrix.h"
namespace dlib
{
......@@ -23,6 +25,14 @@ namespace dlib
measurements > 0
WHAT THIS OBJECT REPRESENTS
This object implements the Kalman filter, which is a tool for
recursively estimating the state of a process given measurements
related to that process. To use this tool you will have to
be familiar with the workings of the Kalman filter. An excellent
introduction can be found in the paper:
An Introduction to the Kalman Filter
by Greg Welch and Gary Bishop
!*/
public:
......@@ -39,125 +49,135 @@ namespace dlib
- #get_current_estimation_error_covariance() == the identity matrix
!*/
void set_observation_model ( const matrix<double,measurements,states>& H_) { H = H_; }
void set_transition_model ( const matrix<double,states,states>& A_) { A = A_; }
void set_process_noise ( const matrix<double,states,states>& Q_) { Q = Q_; }
void set_measurement_noise ( const matrix<double,measurements,measurements>& R_) { R = R_; }
void set_estimation_error_covariance( const matrix<double,states,states>& P_) { P = P_; }
void set_observation_model (
const matrix<double,measurements,states>& H
);
/*!
ensures
- #get_observation_model() == H
!*/
void set_transition_model (
const matrix<double,states,states>& A
);
/*!
ensures
- #get_transition_model() == A
!*/
void set_process_noise (
const matrix<double,states,states>& Q
);
/*!
ensures
- #get_process_noise() == Q
!*/
void set_measurement_noise (
const matrix<double,measurements,measurements>& R
);
/*!
ensures
- #get_measurement_noise() == R
!*/
void set_estimation_error_covariance (
const matrix<double,states,states>& P
);
/*!
ensures
- #get_current_estimation_error_covariance() == P
(Note that you should only set this before you start filtering
since the Kalman filter will maintain the value of P on its own.
So only set this during initialization unless you are sure you
understand what you are doing.)
!*/
const matrix<double,measurements,states>& get_observation_model (
) const { return H; }
) const;
/*!
ensures
- Returns the matrix "H" which relates process states x to measurements z.
The relation is linear, therefore, z = H*x. That is, multiplying a
state by H gives the measurement you expect to observe for that state.
!*/
const matrix<double,states,states>& get_transition_model (
) const { return A; }
) const;
/*!
ensures
- Returns the matrix "A" which determines how process states change over time.
The relation is linear, therefore, given a state vector x, the value you
expect it to have at the next time step is A*x.
!*/
const matrix<double,states,states>& get_process_noise (
) const { return Q; }
) const;
/*!
ensures
- returns the process noise covariance matrix. You can think of this
covariance matrix as a measure of how wrong the assumption of
linear state transitions is.
!*/
const matrix<double,measurements,measurements>& get_measurement_noise (
) const { return R; }
) const;
/*!
ensures
- returns the measurement noise covariance matrix. That is, when we
measure a state x we only obtain H*x corrupted by Gaussian noise.
The measurement noise is the covariance matrix of this Gaussian
noise which corrupts our measurements.
!*/
void update (
)
{
// propagate estimation error covariance forward
P = A*P*trans(A) + Q;
// propagate state forward
x = xb;
xb = A*x;
}
void update (const matrix<double,measurements,1>& z)
{
// propagate estimation error covariance forward
P = A*P*trans(A) + Q;
// compute Kalman gain matrix
const matrix<double,states,measurements> K = P*trans(H)*pinv(H*P*trans(H) + R);
if (got_first_meas)
{
const matrix<double,measurements,1> res = z - H*xb;
// correct the current state estimate
x = xb + K*res;
}
else
{
// Since we don't have a previous state estimate at the start of filtering,
// we will just set the current state to whatever is indicated by the measurement
x = pinv(H)*z;
got_first_meas = true;
}
// propagate state forward in time
xb = A*x;
// update estimation error covariance since we got a measurement.
P = (identity_matrix<double,states>() - K*H)*P;
}
);
/*!
ensures
- propagates the current state estimate forward in time one
time step. In particular:
- #get_current_state() == get_predicted_next_state()
- #get_predicted_next_state() == get_transition_model()*get_current_state()
- #get_current_estimation_error_covariance() == the propagated value of this covariance matrix
!*/
void update (
const matrix<double,measurements,1>& z
);
/*!
ensures
- propagates the current state estimate forward in time one time step.
Also applies a correction based on the given measurement z. In particular:
- #get_current_state(), #get_predicted_next_state(), and
#get_current_estimation_error_covariance() are updated using the
Kalman filter method based on the new measurement in z.
!*/
const matrix<double,states,1>& get_current_state(
) const
{
return x;
}
) const;
/*!
ensures
- returns the current estimate of the state of the process. This
estimate is based on all the measurements supplied to the update()
method.
!*/
const matrix<double,states,1>& get_predicted_next_state(
) const
{
return xb;
}
) const;
/*!
ensures
- returns the next expected value of the process state.
- Specifically, returns get_transition_model()*get_current_state()
!*/
const matrix<double,states,states>& get_current_estimation_error_covariance(
) const
{
return P;
}
friend inline void serialize(const kalman_filter& item, std::ostream& out)
{
int version = 1;
serialize(version, out);
serialize(item.got_first_meas, out);
serialize(item.x, out);
serialize(item.xb, out);
serialize(item.P, out);
serialize(item.H, out);
serialize(item.A, out);
serialize(item.Q, out);
serialize(item.R, out);
}
friend inline void deserialize(kalman_filter& item, std::istream& in)
{
int version = 0;
deserialize(version, in);
if (version != 1)
throw dlib::serialization_error("Unknown version number found while deserializing kalman_filter object.");
deserialize(item.got_first_meas, in);
deserialize(item.x, in);
deserialize(item.xb, in);
deserialize(item.P, in);
deserialize(item.H, in);
deserialize(item.A, in);
deserialize(item.Q, in);
deserialize(item.R, in);
}
private:
bool got_first_meas;
matrix<double,states,1> x, xb;
matrix<double,states,states> P;
matrix<double,measurements,states> H;
matrix<double,states,states> A;
matrix<double,states,states> Q;
matrix<double,measurements,measurements> R;
) const;
/*!
ensures
- returns the current state error estimation covariance matrix.
This matrix captures our uncertainty about the value of get_current_state().
!*/
};
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment