Commit e378be9c authored by Davis King's avatar Davis King

merged

parents 1ca9c0cc 5dd1c056
...@@ -22,6 +22,109 @@ namespace dlib ...@@ -22,6 +22,109 @@ namespace dlib
"dlib::matrix and dlib::array2d objects."); "dlib::matrix and dlib::array2d objects.");
}; };
// ----------------------------------------------------------------------------------------
class input_rgb_image
{
public:
typedef matrix<rgb_pixel> input_type;
const static unsigned int sample_expansion_factor = 1;
input_rgb_image (
) :
avg_red(122.782),
avg_green(117.001),
avg_blue(104.298)
{
}
input_rgb_image (
float avg_red_,
float avg_green_,
float avg_blue_
) : avg_red(avg_red_), avg_green(avg_green_), avg_blue(avg_blue_)
{}
float get_avg_red() const { return avg_red; }
float get_avg_green() const { return avg_green; }
float get_avg_blue() const { return avg_blue; }
template <typename input_iterator>
void to_tensor (
input_iterator ibegin,
input_iterator iend,
resizable_tensor& data
) const
{
DLIB_CASSERT(std::distance(ibegin,iend) > 0,"");
const auto nr = ibegin->nr();
const auto nc = ibegin->nc();
// make sure all the input matrices have the same dimensions
for (auto i = ibegin; i != iend; ++i)
{
DLIB_CASSERT(i->nr()==nr && i->nc()==nc,
"\t input_rgb_image::to_tensor()"
<< "\n\t All matrices given to to_tensor() must have the same dimensions."
<< "\n\t nr: " << nr
<< "\n\t nc: " << nc
<< "\n\t i->nr(): " << i->nr()
<< "\n\t i->nc(): " << i->nc()
);
}
// initialize data to the right size to contain the stuff in the iterator range.
data.set_size(std::distance(ibegin,iend), 3, nr, nc);
const size_t offset = nr*nc;
auto ptr = data.host();
for (auto i = ibegin; i != iend; ++i)
{
for (long r = 0; r < nr; ++r)
{
for (long c = 0; c < nc; ++c)
{
rgb_pixel temp = (*i)(r,c);
auto p = ptr++;
*p = (temp.red-avg_red)/256.0;
p += offset;
*p = (temp.green-avg_green)/256.0;
p += offset;
*p = (temp.blue-avg_blue)/256.0;
p += offset;
}
}
ptr += offset*(data.k()-1);
}
}
friend void serialize(const input_rgb_image& item, std::ostream& out)
{
serialize("input_rgb_image", out);
serialize(item.avg_red, out);
serialize(item.avg_green, out);
serialize(item.avg_blue, out);
}
friend void deserialize(input_rgb_image& item, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "input_rgb_image")
throw serialization_error("Unexpected version found while deserializing dlib::input_rgb_image.");
deserialize(item.avg_red, in);
deserialize(item.avg_green, in);
deserialize(item.avg_blue, in);
}
private:
float avg_red;
float avg_green;
float avg_blue;
};
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
template <typename T, long NR, long NC, typename MM, typename L> template <typename T, long NR, long NC, typename MM, typename L>
......
...@@ -152,6 +152,89 @@ namespace dlib ...@@ -152,6 +152,89 @@ namespace dlib
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
class input_rgb_image
{
/*!
WHAT THIS OBJECT REPRESENTS
This input layer works with RGB images of type matrix<rgb_pixel>. It is
very similar to the dlib::input layer except that it allows you to subtract
the average color value from each color channel when convting an image to a
tensor.
!*/
public:
typedef matrix<rgb_pixel> input_type;
const static unsigned int sample_expansion_factor = 1;
input_rgb_image (
);
/*!
ensures
- #get_avg_red() == 122.782
- #get_avg_green() == 117.001
- #get_avg_blue() == 104.298
!*/
input_rgb_image (
float avg_red,
float avg_green,
float avg_blue
);
/*!
ensures
- #get_avg_red() == avg_red
- #get_avg_green() == avg_green
- #get_avg_blue() == avg_blue
!*/
float get_avg_red(
) const;
/*!
ensures
- returns the value subtracted from the red color channel.
!*/
float get_avg_green(
) const;
/*!
ensures
- returns the value subtracted from the green color channel.
!*/
float get_avg_blue(
) const;
/*!
ensures
- returns the value subtracted from the blue color channel.
!*/
template <typename input_iterator>
void to_tensor (
input_iterator ibegin,
input_iterator iend,
resizable_tensor& data
) const;
/*!
requires
- [ibegin, iend) is an iterator range over input_type objects.
- std::distance(ibegin,iend) > 0
- The input range should contain images that all have the same
dimensions.
ensures
- Converts the iterator range into a tensor and stores it into #data. In
particular, if the input images have R rows, C columns then we will have:
- #data.num_samples() == std::distance(ibegin,iend)
- #data.nr() == R
- #data.nc() == C
- #data.k() == 3
Moreover, each color channel is normalized by having its average value
subtracted (accroding to get_avg_red(), get_avg_green(), or
get_avg_blue()) and then is divided by 256.0.
!*/
};
void serialize(const input_rgb_image& item, std::ostream& out);
void deserialize(input_rgb_image& item, std::istream& in);
} }
#endif // DLIB_DNn_INPUT_ABSTRACT_H_ #endif // DLIB_DNn_INPUT_ABSTRACT_H_
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment