Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
e3ea5b0e
Commit
e3ea5b0e
authored
May 03, 2012
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Filled out this spec file
parent
61020c1b
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
186 additions
and
0 deletions
+186
-0
structural_graph_labeling_trainer_abstract.h
dlib/svm/structural_graph_labeling_trainer_abstract.h
+186
-0
No files found.
dlib/svm/structural_graph_labeling_trainer_abstract.h
View file @
e3ea5b0e
// Copyright (C) 2012 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_STRUCTURAL_GRAPH_LABELING_tRAINER_ABSTRACT_H__
#ifdef DLIB_STRUCTURAL_GRAPH_LABELING_tRAINER_ABSTRACT_H__
#include "../algs.h"
#include "../optimization.h"
#include "structural_svm_graph_labeling_problem_abstract.h"
#include "graph_labeler_abstract.h"
namespace
dlib
{
// ----------------------------------------------------------------------------------------
template
<
typename
vector_type
>
class
structural_graph_labeling_trainer
{
/*!
REQUIREMENTS ON vector_type
- vector_type is a dlib::matrix capable of representing column
vectors or it is a sparse vector type as defined in dlib/svm/sparse_vector_abstract.h.
WHAT THIS OBJECT REPRESENTS
This object is a tool for learning to solve a graph labeling problem based
on a training dataset of example labeled graphs. The training procedure
produces a graph_labeler object which can be used to predict the labelings
of new graphs.
Note that this is just a convenience wrapper around the
structural_svm_graph_labeling_problem to make it look
similar to all the other trainers in dlib.
!*/
public
:
typedef
std
::
vector
<
node_label
>
label_type
;
typedef
graph_labeler
<
vector_type
>
trained_function_type
;
structural_graph_labeling_trainer
(
);
/*!
ensures
- #get_c() == 10
- this object isn't verbose
- #get_epsilon() == 0.1
- #get_num_threads() == 2
- #get_max_cache_size() == 40
!*/
void
set_num_threads
(
unsigned
long
num
);
/*!
ensures
- #get_num_threads() == num
!*/
unsigned
long
get_num_threads
(
)
const
;
/*!
ensures
- returns the number of threads used during training. You should
usually set this equal to the number of processing cores on your
machine.
!*/
void
set_epsilon
(
double
eps
);
/*!
requires
- eps > 0
ensures
- #get_epsilon() == eps
!*/
double
get_epsilon
(
)
const
;
/*!
ensures
- returns the error epsilon that determines when training should stop.
Smaller values may result in a more accurate solution but take longer
to train. You can think of this epsilon value as saying "solve the
optimization problem until the average number of labeling mistakes per
example graph is within epsilon of its optimal value".
!*/
void
set_max_cache_size
(
unsigned
long
max_size
);
/*!
ensures
- #get_max_cache_size() == max_size
!*/
unsigned
long
get_max_cache_size
(
)
const
;
/*!
ensures
- During training, this object basically runs the graph_labeler on each
training sample, over and over. To speed this up, it is possible to
cache the results of these invocations. This function returns the number
of cache elements per training sample kept in the cache. Note that a value
of 0 means caching is not used at all.
!*/
void
be_verbose
(
);
/*!
ensures
- This object will print status messages to standard out so that a
user can observe the progress of the algorithm.
!*/
void
be_quiet
(
);
/*!
ensures
- this object will not print anything to standard out
!*/
void
set_oca
(
const
oca
&
item
);
/*!
ensures
- #get_oca() == item
!*/
const
oca
get_oca
(
)
const
;
/*!
ensures
- returns a copy of the optimizer used to solve the structural SVM problem.
!*/
void
set_c
(
double
C
);
/*!
requires
- C > 0
ensures
- #get_c() = C
!*/
double
get_c
(
)
const
;
/*!
ensures
- returns the SVM regularization parameter. It is the parameter
that determines the trade-off between trying to fit the training
data (i.e. minimize the loss) or allowing more errors but hopefully
improving the generalization of the resulting graph_labeler. Larger
values encourage exact fitting while smaller values of C may encourage
better generalization.
!*/
template
<
typename
graph_type
>
const
graph_labeler
<
vector_type
>
train
(
const
dlib
::
array
<
graph_type
>&
samples
,
const
std
::
vector
<
label_type
>&
labels
)
const
;
/*!
requires
- is_graph_labeling_problem(samples,labels) == true
ensures
- Uses the structural_svm_graph_labeling_problem to train a
graph_labeler on the given samples/labels training pairs.
The idea is to learn to predict a label given an input sample.
- returns a function F with the following properties:
- F(new_sample) == The predicted labels for the nodes in the
graph new_sample.
!*/
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_STRUCTURAL_GRAPH_LABELING_tRAINER_ABSTRACT_H__
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment