Commit e7183403 authored by Davis King's avatar Davis King

updated the docs

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%402384
parent bf2f8f81
......@@ -115,13 +115,14 @@
<item>krls</item>
<item>kcentroid</item>
<item>kkmeans</item>
<item>svm_nu_train</item>
<item>svm_nu_train_prob</item>
<item>svm_nu_cross_validate</item>
<item>svm_nu_trainer</item>
<item>train_probabilistic_decision_function</item>
<item>cross_validate_trainer</item>
<item>rank_features</item>
</sub>
</item>
<item>randomize_samples</item>
<item>is_binary_classification_problem</item>
<item>hsort_array</item>
<item>isort_array</item>
<item>put_in_range</item>
......@@ -879,16 +880,15 @@
<!-- ************************************************************************* -->
<component>
<name>svm_nu_train_prob</name>
<name>train_probabilistic_decision_function</name>
<file>dlib/svm.h</file>
<spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
<description>
<p>
Trains a nu support vector classifier and outputs a <a href="#probabilistic_decision_function">
probabilistic_decision_function</a>.
Trains a <a href="#probabilistic_decision_function">probabilistic_decision_function</a> using
some sort of trainer object such as the <a href="#svm_nu_trainer">svm_nu_trainer</a>.
</p>
This function uses the <a href="#svm_nu_train">svm_nu_train</a> function and creates the
probability model using the technique described in the paper:
The probability model is created by using the technique described in the paper:
<blockquote>
Probabilistic Outputs for Support Vector Machines and
Comparisons to Regularized Likelihood Methods by
......@@ -904,7 +904,7 @@
<!-- ************************************************************************* -->
<component>
<name>svm_nu_train</name>
<name>svm_nu_trainer</name>
<file>dlib/svm.h</file>
<spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
<description>
......@@ -1001,6 +1001,21 @@
</component>
<!-- ************************************************************************* -->
<component>
<name>is_binary_classification_problem</name>
<file>dlib/svm.h</file>
<spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
<description>
This function simply takes two vectors, the first containing veature vectors and
the second containing labels, and reports back if the two could possibly
contain data for a well formed classification problem.
</description>
</component>
<!-- ************************************************************************* -->
<component>
......@@ -1038,11 +1053,12 @@
<!-- ************************************************************************* -->
<component>
<name>svm_nu_cross_validate</name>
<name>cross_validate_trainer</name>
<file>dlib/svm.h</file>
<spec_file link="true">dlib/svm/svm_abstract.h</spec_file>
<description>
Performs k-fold cross validation using the svm_nu_train() function.
Performs k-fold cross validation on a user supplied trainer object such
as the <a href="#svm_nu_trainer">svm_nu_trainer</a>.
</description>
<examples>
<example>svm_ex.cpp.html</example>
......
......@@ -389,11 +389,12 @@
<term link="algorithms.html#randomize_samples" name="randomize_samples"/>
<term link="algorithms.html#is_binary_classification_problem" name="is_binary_classification_problem"/>
<term link="algorithms.html#square_root" name="square_root"/>
<term link="algorithms.html#svm_nu_train" name="svm_nu_train"/>
<term link="algorithms.html#svm_nu_train_prob" name="svm_nu_train_prob"/>
<term link="algorithms.html#svm_nu_cross_validate" name="svm_nu_cross_validate"/>
<term link="algorithms.html#svm_nu_train" name="support vector machine"/>
<term link="algorithms.html#svm_nu_trainer" name="svm_nu_trainer"/>
<term link="algorithms.html#train_probabilistic_decision_function" name="train_probabilistic_decision_function"/>
<term link="algorithms.html#cross_validate_trainer" name="cross_validate_trainer"/>
<term link="algorithms.html#svm_nu_trainer" name="support vector machine"/>
<term link="algorithms.html#vector" name="vector"/>
<term link="algorithms.html#point" name="point"/>
<term link="algorithms.html#krls" name="krls"/>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment