Commit e7bf5a2d authored by Davis King's avatar Davis King

Added a bunch of new multiclass classification tools.

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%404047
parent ce6dad5b
...@@ -28,6 +28,12 @@ ...@@ -28,6 +28,12 @@
#include "svm/svm_one_class_trainer.h" #include "svm/svm_one_class_trainer.h"
#include "svm/svr_trainer.h" #include "svm/svr_trainer.h"
#include "svm/one_vs_one_decision_function.h"
#include "svm/one_vs_one_trainer.h"
#include "svm/multiclass_tools.h"
#include "svm/cross_validate_multiclass_trainer.h"
#endif // DLIB_SVm_HEADER #endif // DLIB_SVm_HEADER
// Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_CROSS_VALIDATE_MULTICLASS_TRaINER_H__
#define DLIB_CROSS_VALIDATE_MULTICLASS_TRaINER_H__
#include <vector>
#include "../matrix.h"
#include "one_vs_one_trainer.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename dec_funct_type,
typename sample_type,
typename label_type
>
const matrix<typename dec_funct_type::scalar_type, 0, 0, typename dec_funct_type::mem_manager_type>
test_multiclass_decision_function (
const dec_funct_type& dec_funct,
const std::vector<sample_type>& x_test,
const std::vector<label_type>& y_test
)
{
typedef typename dec_funct_type::scalar_type scalar_type;
typedef typename dec_funct_type::mem_manager_type mem_manager_type;
// make sure requires clause is not broken
DLIB_ASSERT( is_learning_problem(x_test,y_test) == true,
"\tmatrix test_multiclass_decision_function()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t is_learning_problem(x_test,y_test): "
<< is_learning_problem(x_test,y_test));
const std::vector<label_type> all_labels = dec_funct.get_labels();
// make a lookup table that maps from labels to their index in all_labels
std::map<label_type,unsigned long> label_to_int;
for (unsigned long i = 0; i < all_labels.size(); ++i)
label_to_int[all_labels[i]] = i;
matrix<typename dec_funct_type::scalar_type, 0, 0, typename dec_funct_type::mem_manager_type> res;
res.set_size(all_labels.size(), all_labels.size());
res = 0;
typename std::map<label_type,unsigned long>::const_iterator iter;
// now test this trained object
for (unsigned long i = 0; i < x_test.size(); ++i)
{
iter = label_to_int.find(y_test[i]);
// ignore samples with labels that the decision function doesn't know about.
if (iter == label_to_int.end())
continue;
const unsigned long truth = iter->second;
const unsigned long pred = label_to_int[dec_funct(x_test[i])];
res(truth,pred) += 1;
}
return res;
}
// ----------------------------------------------------------------------------------------
template <
typename trainer_type,
typename sample_type,
typename label_type
>
const matrix<typename trainer_type::scalar_type, 0, 0, typename trainer_type::mem_manager_type>
cross_validate_multiclass_trainer (
const trainer_type& trainer,
const std::vector<sample_type>& x,
const std::vector<label_type>& y,
const long folds
)
{
typedef typename trainer_type::scalar_type scalar_type;
typedef typename trainer_type::mem_manager_type mem_manager_type;
// make sure requires clause is not broken
DLIB_ASSERT(is_learning_problem(x,y) == true &&
1 < folds && folds <= static_cast<long>(x.size()),
"\tmatrix cross_validate_multiclass_trainer()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t x.size(): " << x.size()
<< "\n\t folds: " << folds
<< "\n\t is_learning_problem(x,y): " << is_learning_problem(x,y)
);
const std::vector<label_type> all_labels = select_all_distinct_labels(y);
// count the number of times each label shows up
std::map<label_type,long> label_counts;
for (unsigned long i = 0; i < y.size(); ++i)
label_counts[y[i]] += 1;
// figure out how many samples from each class will be in the test and train splits
std::map<label_type,long> num_in_test, num_in_train;
for (typename std::map<label_type,long>::iterator i = label_counts.begin(); i != label_counts.end(); ++i)
{
const long in_test = i->second/folds;
num_in_test[i->first] = in_test;
num_in_train[i->first] = i->second - in_test;
}
std::vector<sample_type> x_test, x_train;
std::vector<label_type> y_test, y_train;
matrix<scalar_type, 0, 0, mem_manager_type> res;
std::map<label_type,long> next_test_idx;
for (unsigned long i = 0; i < all_labels.size(); ++i)
next_test_idx[all_labels[i]] = 0;
label_type label;
for (long i = 0; i < folds; ++i)
{
x_test.clear();
y_test.clear();
x_train.clear();
y_train.clear();
// load up the test samples
for (unsigned long j = 0; j < all_labels.size(); ++j)
{
label = all_labels[j];
long next = next_test_idx[label];
long cur = 0;
const long num_needed = num_in_test[label];
while (cur < num_needed)
{
if (y[next] == label)
{
x_test.push_back(x[next]);
y_test.push_back(label);
++cur;
}
next = (next + 1)%x.size();
}
next_test_idx[label] = next;
}
// load up the training samples
for (unsigned long j = 0; j < all_labels.size(); ++j)
{
label = all_labels[j];
long next = next_test_idx[label];
long cur = 0;
const long num_needed = num_in_train[label];
while (cur < num_needed)
{
if (y[next] == label)
{
x_train.push_back(x[next]);
y_train.push_back(label);
++cur;
}
next = (next + 1)%x.size();
}
}
try
{
// do the training and testing
res += test_multiclass_decision_function(trainer.train(x_train,y_train),x_test,y_test);
}
catch (invalid_nu_error&)
{
// just ignore cases which result in an invalid nu
}
} // for (long i = 0; i < folds; ++i)
return res;
}
}
// ----------------------------------------------------------------------------------------
#endif // DLIB_CROSS_VALIDATE_MULTICLASS_TRaINER_H__
// Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_CROSS_VALIDATE_MULTICLASS_TRaINER_ABSTRACT_H__
#ifdef DLIB_CROSS_VALIDATE_MULTICLASS_TRaINER_ABSTRACT_H__
#include <vector>
#include "../matrix.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename dec_funct_type,
typename sample_type,
typename label_type
>
const matrix<typename dec_funct_type::scalar_type, 0, 0, typename dec_funct_type::mem_manager_type>
test_multiclass_decision_function (
const dec_funct_type& dec_funct,
const std::vector<sample_type>& x_test,
const std::vector<label_type>& y_test
);
/*!
requires
- is_learning_problem(x_test, y_test)
- dec_funct_type == some kind of multiclass decision function object
(e.g. one_vs_one_decision_function)
ensures
- Tests dec_funct against the given samples in x_test and labels in y_test
and returns a confusion matrix summarizing the results.
- let L = dec_funct.get_labels(). Then the confusion matrix C returned
by this function has the following properties.
- C.nr() == C.nc() == L.size()
- C(r,c) == the number of times a sample with label L(r) was predicted
to have a label of L(c)
- Any samples with a y_test value not in L are ignored. That is, samples
with labels the decision function hasn't ever seen before are ignored.
!*/
// ----------------------------------------------------------------------------------------
template <
typename trainer_type,
typename sample_type,
typename label_type
>
const matrix<typename trainer_type::scalar_type, 0, 0, typename trainer_type::mem_manager_type>
cross_validate_multiclass_trainer (
const trainer_type& trainer,
const std::vector<sample_type>& x,
const std::vector<label_type>& y,
const long folds
);
/*!
requires
- is_learning_problem(x,y)
- 1 < folds <= x.size()
- trainer_type == some kind of multiclass classification trainer object (e.g. one_vs_one_trainer)
ensures
- performs k-fold cross validation by using the given trainer to solve the
given multiclass classification problem for the given number of folds.
Each fold is tested using the output of the trainer and the confusion
matrix from all folds is summed and returned.
- The total confusion matrix is computed by running test_binary_decision_function()
on each fold and summing its output.
- The number of folds used is given by the folds argument.
- let L = select_all_distinct_labels(y). Then the confusion matrix C returned
by this function has the following properties.
- C.nr() == C.nc() == L.size()
- C(r,c) == the number of times a sample with label L(r) was predicted
to have a label of L(c)
!*/
}
// ----------------------------------------------------------------------------------------
#endif // DLIB_CROSS_VALIDATE_MULTICLASS_TRaINER_ABSTRACT_H__
// Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_MULTICLASS_TOoLS_H__
#define DLIB_MULTICLASS_TOoLS_H__
#include "multiclass_tools_abstract.h"
#include <vector>
#include <set>
#include "../unordered_pair.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <typename label_type>
std::vector<label_type> select_all_distinct_labels (
const std::vector<label_type>& labels
)
{
std::set<label_type> temp;
temp.insert(labels.begin(), labels.end());
return std::vector<label_type>(temp.begin(), temp.end());
}
// ----------------------------------------------------------------------------------------
template <typename label_type, typename U>
std::vector<unordered_pair<label_type> > find_missing_pairs (
const std::map<unordered_pair<label_type>,U>& bdfs
)
{
typedef std::map<unordered_pair<label_type>,U> map_type;
// find all the labels
std::set<label_type> temp;
for (typename map_type::const_iterator i = bdfs.begin(); i != bdfs.end(); ++i)
{
temp.insert(i->first.first);
temp.insert(i->first.second);
}
std::vector<unordered_pair<label_type> > missing_pairs;
// now make sure all label pairs are present
typename std::set<label_type>::const_iterator i, j;
for (i = temp.begin(); i != temp.end(); ++i)
{
for (j = i, ++j; j != temp.end(); ++j)
{
const unordered_pair<label_type> p(*i, *j);
if (bdfs.count(p) == 0)
missing_pairs.push_back(p);
}
}
return missing_pairs;
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_MULTICLASS_TOoLS_H__
// Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_MULTICLASS_TOoLS_ABSTRACT_H__
#ifdef DLIB_MULTICLASS_TOoLS_ABSTRACT_H__
#include <vector>
#include <map>
#include "../unordered_pair.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <typename label_type>
std::vector<label_type> select_all_distinct_labels (
const std::vector<label_type>& labels
);
/*!
ensures
- Determines all distinct values present in labels and stores them
into a sorted vector and returns it. They are sorted in ascending
order.
!*/
// ----------------------------------------------------------------------------------------
template <typename label_type, typename U>
std::vector<unordered_pair<label_type> > find_missing_pairs (
const std::map<unordered_pair<label_type>,U>& binary_decision_functions
);
/*!
ensures
- Let L denote the set of all label_type values present in binary_decision_functions.
- This function finds all the label pairs with both elements distinct and in L but
not also in binary_decision_functions. All these missing pairs are stored
in a sorted vector and returned. They are sorted in ascending order.
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_MULTICLASS_TOoLS_ABSTRACT_H__
This diff is collapsed.
// Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_ONE_VS_ONE_DECISION_FUnCTION_ABSTRACT_H__
#ifdef DLIB_ONE_VS_ONE_DECISION_FUnCTION_ABSTRACT_H__
#include "../serialize.h"
#include <map>
#include "../any/any_decision_function_abstract.h"
#include "../unordered_pair.h"
#include "one_vs_one_trainer_abstract.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
struct null_df
{
/*!
WHAT THIS OBJECT REPRESENTS
This is a type used to represent an unused field in the
list of template arguments of the one_vs_one_decision_function
defined below. As such, this object doesn't actually do anything.
!*/
template <typename T>
double operator() ( const T&) const { return 0; }
};
// ----------------------------------------------------------------------------------------
template <
typename one_vs_one_trainer,
typename DF1 = null_df, typename DF2 = null_df, typename DF3 = null_df,
typename DF4 = null_df, typename DF5 = null_df, typename DF6 = null_df,
typename DF7 = null_df, typename DF8 = null_df, typename DF9 = null_df,
typename DF10 = null_df
>
class one_vs_one_decision_function
{
/*!
REQUIREMENTS ON one_vs_one_trainer
This should be an instantiation of the one_vs_one_trainer template.
It is used to infer which types are used for various things, such as
representing labels.
REQUIREMENTS ON DF*
These types can either be left at their default values or set
to any kind of decision function object capable of being
stored in an any_decision_function<sample_type,scalar_type>
object. These types should also be serializable.
WHAT THIS OBJECT REPRESENTS
This object represents a multiclass classifier built out
of a set of binary classifiers. Each binary classifier
is used to vote for the correct multiclass label using a
one vs. one strategy. Therefore, if you have N classes then
there will be N*(N-1)/2 binary classifiers inside this object.
Note that the DF* template arguments are only used if you want
to serialize and deserialize one_vs_one_decision_function objects.
Specifically, all the types of binary decision function contained
within a one_vs_one_decision_function must be listed in the
template arguments if serialization and deserialization is to
be used.
!*/
public:
typedef typename one_vs_one_trainer::label_type label_type;
typedef typename one_vs_one_trainer::sample_type sample_type;
typedef typename one_vs_one_trainer::scalar_type scalar_type;
typedef typename one_vs_one_trainer::mem_manager_type mem_manager_type;
typedef std::map<unordered_pair<label_type>, any_decision_function<sample_type, scalar_type> > binary_function_table;
one_vs_one_decision_function(
);
/*!
ensures
- #number_of_classes() == 0
- #get_binary_decision_functions().size() == 0
- #get_labels().size() == 0
!*/
explicit one_vs_one_decision_function(
const binary_function_table& decision_functions
);
/*!
requires
- find_missing_pairs(decision_functions).size() == 0
(i.e. all pairs of labels have an associated decision function)
ensures
- #get_binary_decision_functions() == decision_functions
- #get_labels() == a list of all the labels which appear in the
given set of decision functions
- #number_of_classes() == #get_labels().size()
!*/
template <
typename df1, typename df2, typename df3, typename df4, typename df5,
typename df6, typename df7, typename df8, typename df9, typename df10
>
one_vs_one_decision_function (
const one_vs_one_decision_function<one_vs_one_trainer,
df1, df2, df3, df4, df5,
df6, df7, df8, df9, df10>& item
);
/*!
ensures
- #*this will be a copy of item
- #number_of_classes() == item.number_of_classes()
- #get_labels() == item.get_labels()
- #get_binary_decision_functions() == item.get_binary_decision_functions()
!*/
const binary_function_table& get_binary_decision_functions (
) const;
/*!
ensures
- returns the table of binary decision functions used by this
object. The correspondence between binary decision functions
and multiclass labels is the following:
- for each element i of get_binary_decision_functions()
- i->first == the label pair associated with binary decision
function i->second.
- if (decision function i->second outputs a value > 0) then
- i->second is indicating that a test sample should
receive a label of i->first.first
- else
- i->second is indicating that a test sample should
receive a label of i->first.second
!*/
const std::vector<label_type> get_labels (
) const;
/*!
ensures
- returns a vector containing all the labels which can be
predicted by this object.
!*/
unsigned long number_of_classes (
) const;
/*!
ensures
- returns get_labels().size()
(i.e. returns the number of different labels/classes predicted by
this object)
!*/
label_type operator() (
const sample_type& sample
) const
/*!
requires
- number_of_classes() != 0
ensures
- evaluates all the decision functions in get_binary_decision_functions()
and returns the label which received the most votes.
!*/
};
// ----------------------------------------------------------------------------------------
template <
typename T,
typename DF1, typename DF2, typename DF3,
typename DF4, typename DF5, typename DF6,
typename DF7, typename DF8, typename DF9,
typename DF10
>
void serialize(
const one_vs_one_decision_function<T,DF1,DF2,DF3,DF4,DF5,DF6,DF7,DF8,DF9,DF10>& item,
std::ostream& out
);
/*!
ensures
- writes the given item to the output stream out.
throws
- serialization_error.
This is thrown if there is a problem writing to the ostream or if item
contains a type of decision function not listed among the DF* template
arguments.
!*/
// ----------------------------------------------------------------------------------------
template <
typename T,
typename DF1, typename DF2, typename DF3,
typename DF4, typename DF5, typename DF6,
typename DF7, typename DF8, typename DF9,
typename DF10
>
void deserialize(
one_vs_one_decision_function<T,DF1,DF2,DF3,DF4,DF5,DF6,DF7,DF8,DF9,DF10>& item,
std::istream& in
);
/*!
ensures
- deserializes a one_vs_one_decision_function from in and stores it in item.
throws
- serialization_error.
This is thrown if there is a problem reading from the istream or if the
serialized data contains decision functions not listed among the DF*
template arguments.
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_ONE_VS_ONE_DECISION_FUnCTION_ABSTRACT_H__
// Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_ONE_VS_ONE_TRAiNER_H__
#define DLIB_ONE_VS_ONE_TRAiNER_H__
#include "one_vs_one_trainer_abstract.h"
#include "one_vs_one_decision_function.h"
#include <vector>
#include "../unordered_pair.h"
#include "multiclass_tools.h"
#include <sstream>
#include <iostream>
#include "../any.h"
#include <map>
#include <set>
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename any_trainer,
typename label_type_ = double
>
class one_vs_one_trainer
{
public:
typedef label_type_ label_type;
typedef typename any_trainer::sample_type sample_type;
typedef typename any_trainer::scalar_type scalar_type;
typedef typename any_trainer::mem_manager_type mem_manager_type;
typedef one_vs_one_decision_function<one_vs_one_trainer> trained_function_type;
one_vs_one_trainer (
) :
verbose(false)
{}
void set_trainer (
const any_trainer& trainer
)
/*!
ensures
- sets the trainer used for all pairs of training
!*/
{
default_trainer = trainer;
trainers.clear();
}
void set_trainer (
const any_trainer& trainer,
const label_type& l1,
const label_type& l2
)
/*!
requires
- l1 != l2
ensures
- sets the trainer used for just the l1 l2 class pair
!*/
{
trainers[make_unordered_pair(l1,l2)] = trainer;
}
void be_verbose (
)
{
verbose = true;
}
void be_quiet (
)
{
verbose = false;
}
struct invalid_label : public dlib::error
{
invalid_label(const std::string& msg, const label_type& l1_, const label_type& l2_
) : dlib::error(msg), l1(l1_), l2(l2_) {};
label_type l1, l2;
};
trained_function_type train (
const std::vector<sample_type>& all_samples,
const std::vector<label_type>& all_labels
) const
{
const std::vector<label_type> distinct_labels = select_all_distinct_labels(all_labels);
std::vector<sample_type> samples;
std::vector<scalar_type> labels;
typename trained_function_type::binary_function_table dfs;
for (unsigned long i = 0; i < distinct_labels.size(); ++i)
{
for (unsigned long j = i+1; j < distinct_labels.size(); ++j)
{
samples.clear();
labels.clear();
const unordered_pair<label_type> p(distinct_labels[i], distinct_labels[j]);
// pick out the samples corresponding to these two classes
for (unsigned long k = 0; k < all_samples.size(); ++k)
{
if (all_labels[k] == p.first)
{
samples.push_back(all_samples[k]);
labels.push_back(+1);
}
else if (all_labels[k] == p.second)
{
samples.push_back(all_samples[k]);
labels.push_back(-1);
}
}
if (verbose)
{
std::cout << "Training classifier for " << p.first << " vs. " << p.second << std::endl;
}
// now train a binary classifier using the samples we selected
const typename binary_function_table::const_iterator itr = trainers.find(p);
if (itr != trainers.end())
{
dfs[p] = itr->second.train(samples, labels);
}
else if (default_trainer.is_empty() == false)
{
dfs[p] = default_trainer.train(samples, labels);
}
else
{
std::ostringstream sout;
sout << "In one_vs_one_trainer, no trainer registered for the (" << p.first << ", " << p.second << ") label pair.";
throw invalid_label(sout.str(), p.first, p.second);
}
}
}
return trained_function_type(dfs);
}
private:
any_trainer default_trainer;
typedef std::map<unordered_pair<label_type>, any_trainer> binary_function_table;
binary_function_table trainers;
bool verbose;
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_ONE_VS_ONE_TRAiNER_H__
// Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_ONE_VS_ONE_TRAiNER_ABSTRACT_H__
#ifdef DLIB_ONE_VS_ONE_TRAiNER_ABSTRACT_H__
#include "one_vs_one_decision_function_abstract.h"
#include <vector>
#include "../any/any_trainer_abstract.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename any_trainer,
typename label_type_ = double
>
class one_vs_one_trainer
{
/*!
REQUIREMENTS ON any_trainer
must be an instantiation of the dlib::any_trainer template.
REQUIREMENTS ON label_type_
label_type_ must be default constructable, copyable, and comparable using
operator < and ==. It must also be possible to write it to an std::ostream
using operator<<.
WHAT THIS OBJECT REPRESENTS
This object is a tool for turning a bunch of binary classifiers
into a multiclass classifier. It does this by training the binary
classifiers in a one vs. one fashion. That is, if you have N possible
classes then it trains N*(N-1)/2 binary classifiers which are then used
to vote on the identity of a test sample.
This object works with any kind of binary classification trainer object
capable of being assigned to an any_trainer object. (e.g. the svm_nu_trainer)
!*/
public:
typedef label_type_ label_type;
typedef typename any_trainer::sample_type sample_type;
typedef typename any_trainer::scalar_type scalar_type;
typedef typename any_trainer::mem_manager_type mem_manager_type;
typedef one_vs_one_decision_function<one_vs_one_trainer> trained_function_type;
one_vs_one_trainer (
);
/*!
ensures
- this object is properly initialized
- this object will not be verbose unless be_verbose() is called
- no binary trainers are associated with *this. I.e. you have to
call set_trainer() before calling train()
!*/
void set_trainer (
const any_trainer& trainer
);
/*!
ensures
- sets the trainer used for all pairs of training. Any previous
calls to set_trainer() are overridden by this function. Even the
more specific set_trainer(trainer, l1, l2) form.
!*/
void set_trainer (
const any_trainer& trainer,
const label_type& l1,
const label_type& l2
);
/*!
requires
- l1 != l2
ensures
- Sets the trainer object used to create binary classifiers to
distinguish l1 labeled samples from l2 labeled samples.
!*/
struct invalid_label : public dlib::error
{
/*!
This is the exception thrown by the train() function below.
!*/
label_type l1, l2;
};
void be_verbose (
);
/*!
ensures
- This object will print status messages to standard out so that a
user can observe the progress of the algorithm.
!*/
void be_quiet (
);
/*!
ensures
- this object will not print anything to standard out
!*/
trained_function_type train (
const std::vector<sample_type>& all_samples,
const std::vector<label_type>& all_labels
) const;
/*!
requires
- is_learning_problem(all_samples, all_labels)
ensures
- trains a bunch of binary classifiers in a one vs one fashion to solve the given
multiclass classification problem.
- returns a one_vs_one_decision_function F with the following properties:
- F contains all the learned binary classifiers and can be used to predict
the labels of new samples.
- if (new_x is a sample predicted to have a label of L) then
- F(new_x) == L
- F.get_labels() == select_all_distinct_labels(all_labels)
- F.number_of_classes() == select_all_distinct_labels(all_labels).size()
throws
- invalid_label
This exception is thrown if there are labels in all_labels which don't have
any corresponding trainer object. This will never happen if set_trainer(trainer)
has been called. However, if only the set_trainer(trainer,l1,l2) form has been
used then this exception is thrown if not all necessary label pairs have been
given a trainer.
invalid_label::l1 and invalid_label::l2 will contain the label pair which is
missing a trainer object. Additionally, the exception will contain an
informative error message available via invalid_label::what().
!*/
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_ONE_VS_ONE_TRAiNER_ABSTRACT_H__
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment