Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
ee966b64
Commit
ee966b64
authored
May 11, 2018
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
updated docs
parent
8b7cb1f5
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
49 additions
and
0 deletions
+49
-0
imaging.xml
docs/docs/imaging.xml
+46
-0
term_index.xml
docs/docs/term_index.xml
+1
-0
makedocs
docs/makedocs
+2
-0
No files found.
docs/docs/imaging.xml
View file @
ee966b64
...
...
@@ -169,6 +169,7 @@
<item>
threshold_image
</item>
<item>
partition_pixels
</item>
<item>
hough_transform
</item>
<item>
image_gradients
</item>
</section>
<section>
...
...
@@ -1401,6 +1402,51 @@
</examples>
</component>
<!-- ************************************************************************* -->
<component>
<name>
image_gradients
</name>
<file>
dlib/image_transforms.h
</file>
<spec_file
link=
"true"
>
dlib/image_transforms/edge_detector_abstract.h
</spec_file>
<description>
This class is a tool for computing first and second derivatives of an
image. It does this by fitting a quadratic surface around each pixel and
then computing the gradients of that quadratic surface. For the details
see the paper:
<blockquote>
<a
href=
"quadratic_image_models_IGARSS2013.pdf"
>
Quadratic models for curved line detection in SAR CCD by Davis E. King
and Rhonda D. Phillips
</a>
</blockquote>
This technique gives very accurate gradient estimates and is
also very fast since the entire gradient estimation procedure,
for each type of gradient, is accomplished by cross-correlating
the image with a single separable filter. This means you can
compute gradients at very large scales (e.g. by fitting the
quadratic to a large window, like a 99x99 window) and it still
runs very quickly.
<p>
For example, the filters used to compute the X, Y, XX, XY,
and YY gradients at a scale of 130 are shown below:
<table>
<tr>
<td>
X:
</td>
<td><img
src=
"image_gradient_x.jpg"
/></td>
<td>
Y:
</td>
<td><img
src=
"image_gradient_y.jpg"
/></td>
</tr>
<tr>
<td>
XX:
</td>
<td><img
src=
"image_gradient_xx.jpg"
/></td>
<td>
XY:
</td>
<td><img
src=
"image_gradient_xy.jpg"
/></td>
<td>
YY:
</td>
<td><img
src=
"image_gradient_yy.jpg"
/></td>
</tr>
</table>
</p>
</description>
</component>
<!-- ************************************************************************* -->
<component>
...
...
docs/docs/term_index.xml
View file @
ee966b64
...
...
@@ -1429,6 +1429,7 @@
<term
file=
"imaging.html"
name=
"get_pixel_intensity"
include=
"dlib/pixel.h"
/>
<term
file=
"imaging.html"
name=
"hysteresis_threshold"
include=
"dlib/image_transforms.h"
/>
<term
file=
"imaging.html"
name=
"sobel_edge_detector"
include=
"dlib/image_transforms.h"
/>
<term
file=
"imaging.html"
name=
"image_gradients"
include=
"dlib/image_transforms.h"
/>
<term
file=
"imaging.html"
name=
"suppress_non_maximum_edges"
include=
"dlib/image_transforms.h"
/>
<term
file=
"imaging.html"
name=
"zero_border_pixels"
include=
"dlib/image_transforms.h"
/>
<term
file=
"imaging.html"
name=
"binary_close"
include=
"dlib/image_transforms.h"
/>
...
...
docs/makedocs
View file @
ee966b64
...
...
@@ -191,10 +191,12 @@ makedocs ()
cp docs/*.js docs/web
cp docs/*.js docs/chm/docs
cp docs/*.png docs/web
cp docs/*.pdf docs/web
cp docs/*.jpg docs/web
cp docs/*.webm docs/web
cp docs/*.ico docs/web
cp docs/*.png docs/chm/docs
cp docs/*.pdf docs/chm/docs
cp docs/*.jpg docs/chm/docs
cp docs/*.webm docs/chm/docs
cp docs/*.ico docs/chm/docs
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment