Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
efb1a12d
Commit
efb1a12d
authored
May 06, 2012
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added the ability for the user to set the per class loss.
parent
2c45ab5e
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
87 additions
and
3 deletions
+87
-3
structural_svm_graph_labeling_problem.h
dlib/svm/structural_svm_graph_labeling_problem.h
+47
-3
structural_svm_graph_labeling_problem_abstract.h
dlib/svm/structural_svm_graph_labeling_problem_abstract.h
+40
-0
No files found.
dlib/svm/structural_svm_graph_labeling_problem.h
View file @
efb1a12d
...
...
@@ -149,6 +149,8 @@ namespace dlib
<<
"
\n\t
labels.size(): "
<<
labels
.
size
()
<<
"
\n\t
this: "
<<
this
);
loss_pos
=
1
.
0
;
loss_neg
=
1
.
0
;
// figure out how many dimensions are in the node and edge vectors.
node_dims
=
0
;
...
...
@@ -172,6 +174,41 @@ namespace dlib
return
edge_dims
;
}
void
set_loss_on_positive_class
(
double
loss
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
loss
>=
0
,
"
\t
structural_svm_graph_labeling_problem::set_loss_on_positive_class()"
<<
"
\n\t
Invalid inputs were given to this function."
<<
"
\n\t
loss: "
<<
loss
<<
"
\n\t
this: "
<<
this
);
loss_pos
=
loss
;
}
void
set_loss_on_negative_class
(
double
loss
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
loss
>=
0
,
"
\t
structural_svm_graph_labeling_problem::set_loss_on_negative_class()"
<<
"
\n\t
Invalid inputs were given to this function."
<<
"
\n\t
loss: "
<<
loss
<<
"
\n\t
this: "
<<
this
);
loss_pos
=
loss
;
}
double
get_loss_on_negative_class
(
)
const
{
return
loss_neg
;
}
double
get_loss_on_positive_class
(
)
const
{
return
loss_pos
;
}
private
:
virtual
long
get_num_dimensions
(
)
const
...
...
@@ -303,9 +340,9 @@ namespace dlib
// max when we use find_max_factor_graph_potts() below.
const
bool
label_i
=
(
labels
[
idx
][
i
]
!=
0
);
if
(
label_i
)
g
.
node
(
i
).
data
-=
1
.
0
;
g
.
node
(
i
).
data
-=
loss_pos
;
else
g
.
node
(
i
).
data
+=
1
.
0
;
g
.
node
(
i
).
data
+=
loss_neg
;
for
(
unsigned
long
n
=
0
;
n
<
g
.
node
(
i
).
number_of_neighbors
();
++
n
)
{
...
...
@@ -331,7 +368,12 @@ namespace dlib
const
bool
true_label
=
(
labels
[
idx
][
i
]
!=
0
);
const
bool
pred_label
=
(
labeling
[
i
]
!=
0
);
if
(
true_label
!=
pred_label
)
++
loss
;
{
if
(
true_label
==
true
)
loss
+=
loss_pos
;
else
loss
+=
loss_neg
;
}
}
// compute psi
...
...
@@ -343,6 +385,8 @@ namespace dlib
long
node_dims
;
long
edge_dims
;
double
loss_pos
;
double
loss_neg
;
};
// ----------------------------------------------------------------------------------------
...
...
dlib/svm/structural_svm_graph_labeling_problem_abstract.h
View file @
efb1a12d
...
...
@@ -120,6 +120,46 @@ namespace dlib
part of the total weight vector. You can do this by passing get_num_edge_weights()
to the third argument to oca::operator().
!*/
void
set_loss_on_positive_class
(
double
loss
);
/*!
requires
- loss >= 0
ensures
- #get_loss_on_positive_class() == loss
!*/
void
set_loss_on_negative_class
(
double
loss
);
/*!
requires
- loss >= 0
ensures
- #get_loss_on_negative_class() == loss
!*/
double
get_loss_on_positive_class
(
)
const
;
/*!
ensures
- returns the loss incurred when a graph node which is supposed to have
a label of true gets misclassified. This value controls how much we care
about correctly classifying nodes which should be labeled as true. Larger
loss values indicate that we care more strongly than smaller values.
!*/
double
get_loss_on_negative_class
(
)
const
;
/*!
ensures
- returns the loss incurred when a graph node which is supposed to have
a label of false gets misclassified. This value controls how much we care
about correctly classifying nodes which should be labeled as false. Larger
loss values indicate that we care more strongly than smaller values.
!*/
};
// ----------------------------------------------------------------------------------------
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment