Commit eff11e27 authored by Davis King's avatar Davis King

Renamed the support_vectors field of the decision_function and distance_function objects

to basis_vectors.  A long time ago the name support_vectors made sense but now that these
objects are used by a lot of algorithms that don't technically produce support vectors
this name is confusing.  The name basis_vectors more accurately reflects how these objects
get used.

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%403278
parent 4ddd0cae
...@@ -34,7 +34,7 @@ namespace dlib ...@@ -34,7 +34,7 @@ namespace dlib
scalar_vector_type alpha; scalar_vector_type alpha;
scalar_type b; scalar_type b;
K kernel_function; K kernel_function;
sample_vector_type support_vectors; sample_vector_type basis_vectors;
decision_function ( decision_function (
) : b(0), kernel_function(K()) {} ) : b(0), kernel_function(K()) {}
...@@ -45,19 +45,19 @@ namespace dlib ...@@ -45,19 +45,19 @@ namespace dlib
alpha(d.alpha), alpha(d.alpha),
b(d.b), b(d.b),
kernel_function(d.kernel_function), kernel_function(d.kernel_function),
support_vectors(d.support_vectors) basis_vectors(d.basis_vectors)
{} {}
decision_function ( decision_function (
const scalar_vector_type& alpha_, const scalar_vector_type& alpha_,
const scalar_type& b_, const scalar_type& b_,
const K& kernel_function_, const K& kernel_function_,
const sample_vector_type& support_vectors_ const sample_vector_type& basis_vectors_
) : ) :
alpha(alpha_), alpha(alpha_),
b(b_), b(b_),
kernel_function(kernel_function_), kernel_function(kernel_function_),
support_vectors(support_vectors_) basis_vectors(basis_vectors_)
{} {}
decision_function& operator= ( decision_function& operator= (
...@@ -69,7 +69,7 @@ namespace dlib ...@@ -69,7 +69,7 @@ namespace dlib
alpha = d.alpha; alpha = d.alpha;
b = d.b; b = d.b;
kernel_function = d.kernel_function; kernel_function = d.kernel_function;
support_vectors = d.support_vectors; basis_vectors = d.basis_vectors;
} }
return *this; return *this;
} }
...@@ -80,7 +80,7 @@ namespace dlib ...@@ -80,7 +80,7 @@ namespace dlib
{ {
scalar_type temp = 0; scalar_type temp = 0;
for (long i = 0; i < alpha.nr(); ++i) for (long i = 0; i < alpha.nr(); ++i)
temp += alpha(i) * kernel_function(x,support_vectors(i)); temp += alpha(i) * kernel_function(x,basis_vectors(i));
return temp - b; return temp - b;
} }
...@@ -99,7 +99,7 @@ namespace dlib ...@@ -99,7 +99,7 @@ namespace dlib
serialize(item.alpha, out); serialize(item.alpha, out);
serialize(item.b, out); serialize(item.b, out);
serialize(item.kernel_function, out); serialize(item.kernel_function, out);
serialize(item.support_vectors, out); serialize(item.basis_vectors, out);
} }
catch (serialization_error e) catch (serialization_error e)
{ {
...@@ -120,7 +120,7 @@ namespace dlib ...@@ -120,7 +120,7 @@ namespace dlib
deserialize(item.alpha, in); deserialize(item.alpha, in);
deserialize(item.b, in); deserialize(item.b, in);
deserialize(item.kernel_function, in); deserialize(item.kernel_function, in);
deserialize(item.support_vectors, in); deserialize(item.basis_vectors, in);
} }
catch (serialization_error e) catch (serialization_error e)
{ {
...@@ -246,7 +246,7 @@ namespace dlib ...@@ -246,7 +246,7 @@ namespace dlib
scalar_vector_type alpha; scalar_vector_type alpha;
scalar_type b; scalar_type b;
K kernel_function; K kernel_function;
sample_vector_type support_vectors; sample_vector_type basis_vectors;
distance_function ( distance_function (
) : b(0), kernel_function(K()) {} ) : b(0), kernel_function(K()) {}
...@@ -257,19 +257,19 @@ namespace dlib ...@@ -257,19 +257,19 @@ namespace dlib
alpha(d.alpha), alpha(d.alpha),
b(d.b), b(d.b),
kernel_function(d.kernel_function), kernel_function(d.kernel_function),
support_vectors(d.support_vectors) basis_vectors(d.basis_vectors)
{} {}
distance_function ( distance_function (
const scalar_vector_type& alpha_, const scalar_vector_type& alpha_,
const scalar_type& b_, const scalar_type& b_,
const K& kernel_function_, const K& kernel_function_,
const sample_vector_type& support_vectors_ const sample_vector_type& basis_vectors_
) : ) :
alpha(alpha_), alpha(alpha_),
b(b_), b(b_),
kernel_function(kernel_function_), kernel_function(kernel_function_),
support_vectors(support_vectors_) basis_vectors(basis_vectors_)
{} {}
distance_function& operator= ( distance_function& operator= (
...@@ -281,7 +281,7 @@ namespace dlib ...@@ -281,7 +281,7 @@ namespace dlib
alpha = d.alpha; alpha = d.alpha;
b = d.b; b = d.b;
kernel_function = d.kernel_function; kernel_function = d.kernel_function;
support_vectors = d.support_vectors; basis_vectors = d.basis_vectors;
} }
return *this; return *this;
} }
...@@ -292,7 +292,7 @@ namespace dlib ...@@ -292,7 +292,7 @@ namespace dlib
{ {
scalar_type temp = 0; scalar_type temp = 0;
for (long i = 0; i < alpha.nr(); ++i) for (long i = 0; i < alpha.nr(); ++i)
temp += alpha(i) * kernel_function(x,support_vectors(i)); temp += alpha(i) * kernel_function(x,basis_vectors(i));
temp = b + kernel_function(x,x) - 2*temp; temp = b + kernel_function(x,x) - 2*temp;
if (temp > 0) if (temp > 0)
...@@ -308,7 +308,7 @@ namespace dlib ...@@ -308,7 +308,7 @@ namespace dlib
scalar_type temp = 0; scalar_type temp = 0;
for (long i = 0; i < alpha.nr(); ++i) for (long i = 0; i < alpha.nr(); ++i)
for (long j = 0; j < x.alpha.nr(); ++j) for (long j = 0; j < x.alpha.nr(); ++j)
temp += alpha(i)*x.alpha(j) * kernel_function(support_vectors(i), x.support_vectors(j)); temp += alpha(i)*x.alpha(j) * kernel_function(basis_vectors(i), x.basis_vectors(j));
temp = b + x.b - 2*temp; temp = b + x.b - 2*temp;
if (temp > 0) if (temp > 0)
...@@ -331,7 +331,7 @@ namespace dlib ...@@ -331,7 +331,7 @@ namespace dlib
serialize(item.alpha, out); serialize(item.alpha, out);
serialize(item.b, out); serialize(item.b, out);
serialize(item.kernel_function, out); serialize(item.kernel_function, out);
serialize(item.support_vectors, out); serialize(item.basis_vectors, out);
} }
catch (serialization_error e) catch (serialization_error e)
{ {
...@@ -352,7 +352,7 @@ namespace dlib ...@@ -352,7 +352,7 @@ namespace dlib
deserialize(item.alpha, in); deserialize(item.alpha, in);
deserialize(item.b, in); deserialize(item.b, in);
deserialize(item.kernel_function, in); deserialize(item.kernel_function, in);
deserialize(item.support_vectors, in); deserialize(item.basis_vectors, in);
} }
catch (serialization_error e) catch (serialization_error e)
{ {
......
...@@ -42,7 +42,7 @@ namespace dlib ...@@ -42,7 +42,7 @@ namespace dlib
scalar_vector_type alpha; scalar_vector_type alpha;
scalar_type b; scalar_type b;
K kernel_function; K kernel_function;
sample_vector_type support_vectors; sample_vector_type basis_vectors;
decision_function ( decision_function (
); );
...@@ -50,7 +50,7 @@ namespace dlib ...@@ -50,7 +50,7 @@ namespace dlib
ensures ensures
- #b == 0 - #b == 0
- #alpha.nr() == 0 - #alpha.nr() == 0
- #support_vectors.nr() == 0 - #basis_vectors.nr() == 0
!*/ !*/
decision_function ( decision_function (
...@@ -65,11 +65,11 @@ namespace dlib ...@@ -65,11 +65,11 @@ namespace dlib
const scalar_vector_type& alpha_, const scalar_vector_type& alpha_,
const scalar_type& b_, const scalar_type& b_,
const K& kernel_function_, const K& kernel_function_,
const sample_vector_type& support_vectors_ const sample_vector_type& basis_vectors_
) : alpha(alpha_), b(b_), kernel_function(kernel_function_), support_vectors(support_vectors_) {} ) : alpha(alpha_), b(b_), kernel_function(kernel_function_), basis_vectors(basis_vectors_) {}
/*! /*!
ensures ensures
- populates the decision function with the given support vectors, weights(i.e. alphas), - populates the decision function with the given basis vectors, weights(i.e. alphas),
b term, and kernel function. b term, and kernel function.
!*/ !*/
...@@ -93,7 +93,7 @@ namespace dlib ...@@ -93,7 +93,7 @@ namespace dlib
{ {
scalar_type temp = 0; scalar_type temp = 0;
for (long i = 0; i < alpha.nr(); ++i) for (long i = 0; i < alpha.nr(); ++i)
temp += alpha(i) * kernel_function(x,support_vectors(i)); temp += alpha(i) * kernel_function(x,basis_vectors(i));
return temp - b; return temp - b;
} }
...@@ -255,7 +255,7 @@ namespace dlib ...@@ -255,7 +255,7 @@ namespace dlib
scalar_vector_type alpha; scalar_vector_type alpha;
scalar_type b; scalar_type b;
K kernel_function; K kernel_function;
sample_vector_type support_vectors; sample_vector_type basis_vectors;
distance_function ( distance_function (
); );
...@@ -263,7 +263,7 @@ namespace dlib ...@@ -263,7 +263,7 @@ namespace dlib
ensures ensures
- #b == 0 - #b == 0
- #alpha.nr() == 0 - #alpha.nr() == 0
- #support_vectors.nr() == 0 - #basis_vectors.nr() == 0
!*/ !*/
distance_function ( distance_function (
...@@ -278,11 +278,11 @@ namespace dlib ...@@ -278,11 +278,11 @@ namespace dlib
const scalar_vector_type& alpha_, const scalar_vector_type& alpha_,
const scalar_type& b_, const scalar_type& b_,
const K& kernel_function_, const K& kernel_function_,
const sample_vector_type& support_vectors_ const sample_vector_type& basis_vectors_
) : alpha(alpha_), b(b_), kernel_function(kernel_function_), support_vectors(support_vectors_) {} ) : alpha(alpha_), b(b_), kernel_function(kernel_function_), basis_vectors(basis_vectors_) {}
/*! /*!
ensures ensures
- populates the decision function with the given support vectors, weights(i.e. alphas), - populates the distance function with the given basis vectors, weights(i.e. alphas),
b term, and kernel function. b term, and kernel function.
!*/ !*/
...@@ -301,15 +301,15 @@ namespace dlib ...@@ -301,15 +301,15 @@ namespace dlib
/*! /*!
ensures ensures
- Let O(x) represent the point x projected into kernel induced feature space. - Let O(x) represent the point x projected into kernel induced feature space.
- let c == sum alpha(i)*O(support_vectors(i)) == the point in kernel space that - let c == sum alpha(i)*O(basis_vectors(i)) == the point in kernel space that
this object represents. this object represents.
- Then this object returns the distance between the points O(x) and c in kernel - Then this object returns the distance between the point O(x) and c in kernel
space. space.
!*/ !*/
{ {
scalar_type temp = 0; scalar_type temp = 0;
for (long i = 0; i < alpha.nr(); ++i) for (long i = 0; i < alpha.nr(); ++i)
temp += alpha(i) * kernel_function(x,support_vectors(i)); temp += alpha(i) * kernel_function(x,basis_vectors(i));
temp = b + kernel_function(x,x) - 2*temp; temp = b + kernel_function(x,x) - 2*temp;
if (temp > 0) if (temp > 0)
...@@ -329,7 +329,7 @@ namespace dlib ...@@ -329,7 +329,7 @@ namespace dlib
scalar_type temp = 0; scalar_type temp = 0;
for (long i = 0; i < alpha.nr(); ++i) for (long i = 0; i < alpha.nr(); ++i)
for (long j = 0; j < x.alpha.nr(); ++j) for (long j = 0; j < x.alpha.nr(); ++j)
temp += alpha(i)*x.alpha(j) * kernel_function(support_vectors(i), x.support_vectors(j)); temp += alpha(i)*x.alpha(j) * kernel_function(basis_vectors(i), x.basis_vectors(j));
temp = b + x.b - 2*temp; temp = b + x.b - 2*temp;
if (temp > 0) if (temp > 0)
......
...@@ -93,9 +93,9 @@ namespace dlib ...@@ -93,9 +93,9 @@ namespace dlib
) const; ) const;
/*! /*!
ensures ensures
- returns the maximum number of dictionary vectors (i.e. support - returns the maximum number of dictionary vectors this object will
vectors) this object will use at a time. That is, dictionary_size() use at a time. That is, dictionary_size() will never be greater
will never be greater than max_dictionary_size(). than max_dictionary_size().
!*/ !*/
bool remove_oldest_first ( bool remove_oldest_first (
...@@ -122,7 +122,9 @@ namespace dlib ...@@ -122,7 +122,9 @@ namespace dlib
) const; ) const;
/*! /*!
ensures ensures
- returns the number of "support vectors" in the dictionary. - returns the number of basis vectors in the dictionary. These are
the basis vectors used by this object to represent a point in kernel
feature space.
!*/ !*/
scalar_type samples_trained ( scalar_type samples_trained (
...@@ -140,11 +142,11 @@ namespace dlib ...@@ -140,11 +142,11 @@ namespace dlib
test used for sparsification (see the KRLS paper for details). This is test used for sparsification (see the KRLS paper for details). This is
a number which governs how accurately this object will approximate the a number which governs how accurately this object will approximate the
centroid it is learning. Smaller values generally result in a more centroid it is learning. Smaller values generally result in a more
accurate estimate while also resulting in a bigger set of support accurate estimate while also resulting in a bigger set of vectors in
vectors in the learned dictionary. Bigger tolerances values result in the dictionary. Bigger tolerances values result in a less accurate
a less accurate estimate but also in less support vectors. (Note estimate but also in less dictionary vectors. (Note that in any case,
that in any case, the max_dictionary_size() limits the number the max_dictionary_size() limits the number of dictionary vectors no
of support vectors no matter the setting of the tolerance) matter the setting of the tolerance)
!*/ !*/
void clear_dictionary ( void clear_dictionary (
......
...@@ -253,8 +253,8 @@ namespace dlib ...@@ -253,8 +253,8 @@ namespace dlib
if (samples_seen > 0) if (samples_seen > 0)
{ {
temp.b = squared_norm(); temp.b = squared_norm();
temp.support_vectors.set_size(1); temp.basis_vectors.set_size(1);
temp.support_vectors(0) = w; temp.basis_vectors(0) = w;
temp.alpha.set_size(1); temp.alpha.set_size(1);
temp.alpha(0) = alpha; temp.alpha(0) = alpha;
} }
...@@ -595,20 +595,20 @@ namespace dlib ...@@ -595,20 +595,20 @@ namespace dlib
if (std::abs(w_extra) > std::numeric_limits<scalar_type>::epsilon()) if (std::abs(w_extra) > std::numeric_limits<scalar_type>::epsilon())
{ {
scale = (x_extra/w_extra); scale = (x_extra/w_extra);
temp.support_vectors.set_size(1); temp.basis_vectors.set_size(1);
temp.alpha.set_size(1); temp.alpha.set_size(1);
temp.support_vectors(0) = w*scale; temp.basis_vectors(0) = w*scale;
temp.alpha(0) = alpha/scale; temp.alpha(0) = alpha/scale;
} }
else else
{ {
// In this case w_extra is zero. So the only way we can get the same // In this case w_extra is zero. So the only way we can get the same
// thing in the output support vector set is by using two vectors // thing in the output basis vector set is by using two vectors
temp.support_vectors.set_size(2); temp.basis_vectors.set_size(2);
temp.alpha.set_size(2); temp.alpha.set_size(2);
temp.support_vectors(0) = 2*w; temp.basis_vectors(0) = 2*w;
temp.alpha(0) = alpha; temp.alpha(0) = alpha;
temp.support_vectors(1) = w; temp.basis_vectors(1) = w;
temp.alpha(1) = -alpha; temp.alpha(1) = -alpha;
} }
...@@ -883,8 +883,8 @@ namespace dlib ...@@ -883,8 +883,8 @@ namespace dlib
if (samples_seen > 0) if (samples_seen > 0)
{ {
temp.b = squared_norm(); temp.b = squared_norm();
temp.support_vectors.set_size(1); temp.basis_vectors.set_size(1);
temp.support_vectors(0) = sample_type(w.begin(), w.end()); temp.basis_vectors(0) = sample_type(w.begin(), w.end());
temp.alpha.set_size(1); temp.alpha.set_size(1);
temp.alpha(0) = alpha; temp.alpha(0) = alpha;
} }
...@@ -1220,22 +1220,22 @@ namespace dlib ...@@ -1220,22 +1220,22 @@ namespace dlib
if (std::abs(w_extra) > std::numeric_limits<scalar_type>::epsilon()) if (std::abs(w_extra) > std::numeric_limits<scalar_type>::epsilon())
{ {
scale = (x_extra/w_extra); scale = (x_extra/w_extra);
temp.support_vectors.set_size(1); temp.basis_vectors.set_size(1);
temp.alpha.set_size(1); temp.alpha.set_size(1);
temp.support_vectors(0) = sample_type(w.begin(), w.end()); temp.basis_vectors(0) = sample_type(w.begin(), w.end());
sparse_vector::scale_by(temp.support_vectors(0), scale); sparse_vector::scale_by(temp.basis_vectors(0), scale);
temp.alpha(0) = alpha/scale; temp.alpha(0) = alpha/scale;
} }
else else
{ {
// In this case w_extra is zero. So the only way we can get the same // In this case w_extra is zero. So the only way we can get the same
// thing in the output support vector set is by using two vectors // thing in the output basis vector set is by using two vectors
temp.support_vectors.set_size(2); temp.basis_vectors.set_size(2);
temp.alpha.set_size(2); temp.alpha.set_size(2);
temp.support_vectors(0) = sample_type(w.begin(), w.end()); temp.basis_vectors(0) = sample_type(w.begin(), w.end());
sparse_vector::scale_by(temp.support_vectors(0), 2); sparse_vector::scale_by(temp.basis_vectors(0), 2);
temp.alpha(0) = alpha; temp.alpha(0) = alpha;
temp.support_vectors(1) = sample_type(w.begin(), w.end()); temp.basis_vectors(1) = sample_type(w.begin(), w.end());
temp.alpha(1) = -alpha; temp.alpha(1) = -alpha;
} }
......
...@@ -72,9 +72,9 @@ namespace dlib ...@@ -72,9 +72,9 @@ namespace dlib
test in the KRLS algorithm. This is a number which governs how test in the KRLS algorithm. This is a number which governs how
accurately this object will approximate the decision function it is accurately this object will approximate the decision function it is
learning. Smaller values generally result in a more accurate learning. Smaller values generally result in a more accurate
estimate while also resulting in a bigger set of support vectors in estimate while also resulting in a bigger set of dictionary vectors in
the learned decision function. Bigger tolerances values result in a the learned decision function. Bigger tolerances values result in a
less accurate decision function but also in less support vectors. less accurate decision function but also in less dictionary vectors.
!*/ !*/
const kernel_type& get_kernel ( const kernel_type& get_kernel (
...@@ -98,7 +98,7 @@ namespace dlib ...@@ -98,7 +98,7 @@ namespace dlib
/*! /*!
ensures ensures
- clears out all learned data - clears out all learned data
(e.g. #get_decision_function().support_vectors.size() == 0) (e.g. #get_decision_function().basis_vectors.size() == 0)
!*/ !*/
scalar_type operator() ( scalar_type operator() (
...@@ -135,8 +135,8 @@ namespace dlib ...@@ -135,8 +135,8 @@ namespace dlib
) const; ) const;
/*! /*!
ensures ensures
- returns the number of "support vectors" in the dictionary. That is, - returns the number of vectors in the dictionary. That is,
returns a number equal to get_decision_function().support_vectors.size() returns a number equal to get_decision_function().basis_vectors.size()
!*/ !*/
decision_function<kernel_type> get_decision_function ( decision_function<kernel_type> get_decision_function (
......
...@@ -248,7 +248,7 @@ namespace dlib ...@@ -248,7 +248,7 @@ namespace dlib
) const ) const
{ {
distance_function<offset_kernel<kernel_type> > df = w.get_distance_function(); distance_function<offset_kernel<kernel_type> > df = w.get_distance_function();
return decision_function<kernel_type>(df.alpha, -tau*sum(df.alpha), kernel, df.support_vectors); return decision_function<kernel_type>(df.alpha, -tau*sum(df.alpha), kernel, df.basis_vectors);
} }
void swap ( void swap (
...@@ -572,7 +572,7 @@ namespace dlib ...@@ -572,7 +572,7 @@ namespace dlib
{ {
decision_function<kernel_type> df = my_trainer.get_decision_function(); decision_function<kernel_type> df = my_trainer.get_decision_function();
std::cout << "\rbatch_trainer(): Percent complete: 100 " << std::endl; std::cout << "\rbatch_trainer(): Percent complete: 100 " << std::endl;
std::cout << " Num sv: " << df.support_vectors.size() << std::endl; std::cout << " Num sv: " << df.basis_vectors.size() << std::endl;
std::cout << " bias: " << df.b << std::endl; std::cout << " bias: " << df.b << std::endl;
return df; return df;
} }
...@@ -632,14 +632,14 @@ namespace dlib ...@@ -632,14 +632,14 @@ namespace dlib
cached_df = my_trainer.get_decision_function(); cached_df = my_trainer.get_decision_function();
std::cout << "\rbatch_trainer(): Percent complete: 100 " << std::endl; std::cout << "\rbatch_trainer(): Percent complete: 100 " << std::endl;
std::cout << " Num sv: " << cached_df.support_vectors.size() << std::endl; std::cout << " Num sv: " << cached_df.basis_vectors.size() << std::endl;
std::cout << " bias: " << cached_df.b << std::endl; std::cout << " bias: " << cached_df.b << std::endl;
return decision_function<kernel_type> ( return decision_function<kernel_type> (
cached_df.alpha, cached_df.alpha,
cached_df.b, cached_df.b,
trainer.get_kernel(), trainer.get_kernel(),
rowm(x, cached_df.support_vectors) rowm(x, cached_df.basis_vectors)
); );
} }
else else
...@@ -651,7 +651,7 @@ namespace dlib ...@@ -651,7 +651,7 @@ namespace dlib
cached_df.alpha, cached_df.alpha,
cached_df.b, cached_df.b,
trainer.get_kernel(), trainer.get_kernel(),
rowm(x, cached_df.support_vectors) rowm(x, cached_df.basis_vectors)
); );
} }
} }
......
...@@ -75,7 +75,7 @@ namespace dlib ...@@ -75,7 +75,7 @@ namespace dlib
) const; ) const;
/*! /*!
ensures ensures
- returns the maximum number of centers (a.k.a. support_vectors in the - returns the maximum number of centers (a.k.a. basis_vectors in the
trained decision_function) you will get when you train this object on data. trained decision_function) you will get when you train this object on data.
!*/ !*/
......
...@@ -117,7 +117,7 @@ namespace dlib ...@@ -117,7 +117,7 @@ namespace dlib
{ {
for (long c = 0; c < K.nc(); ++c) for (long c = 0; c < K.nc(); ++c)
{ {
K(r,c) = kernel(lisf[r], dec_funct.support_vectors(c)); K(r,c) = kernel(lisf[r], dec_funct.basis_vectors(c));
} }
} }
...@@ -255,7 +255,7 @@ namespace dlib ...@@ -255,7 +255,7 @@ namespace dlib
for (long j = 0; j < dec_funct.alpha.size(); ++j) for (long j = 0; j < dec_funct.alpha.size(); ++j)
{ {
bias += dec_funct.alpha(i)*dec_funct.alpha(j)* bias += dec_funct.alpha(i)*dec_funct.alpha(j)*
k(dec_funct.support_vectors(i), dec_funct.support_vectors(j)); k(dec_funct.basis_vectors(i), dec_funct.basis_vectors(j));
} }
} }
} }
...@@ -332,9 +332,9 @@ namespace dlib ...@@ -332,9 +332,9 @@ namespace dlib
double temp = 0; double temp = 0;
for (long i = 0; i < out_vectors.size(); ++i) for (long i = 0; i < out_vectors.size(); ++i)
{ {
for (long j = 0; j < dec_funct.support_vectors.nr(); ++j) for (long j = 0; j < dec_funct.basis_vectors.nr(); ++j)
{ {
temp -= b(i)*dec_funct.alpha(j)*k(out_vectors(i), dec_funct.support_vectors(j)); temp -= b(i)*dec_funct.alpha(j)*k(out_vectors(i), dec_funct.basis_vectors(j));
} }
} }
...@@ -436,9 +436,9 @@ namespace dlib ...@@ -436,9 +436,9 @@ namespace dlib
} }
for (long i = 0; i < out_vectors.size(); ++i) for (long i = 0; i < out_vectors.size(); ++i)
{ {
for (long j = 0; j < dec_funct.support_vectors.size(); ++j) for (long j = 0; j < dec_funct.basis_vectors.size(); ++j)
{ {
res(i) -= dec_funct.alpha(j)*k(out_vectors(i), dec_funct.support_vectors(j)); res(i) -= dec_funct.alpha(j)*k(out_vectors(i), dec_funct.basis_vectors(j));
} }
} }
...@@ -454,9 +454,9 @@ namespace dlib ...@@ -454,9 +454,9 @@ namespace dlib
{ {
temp += b(j)*K_der(out_vectors(j), out_vectors(i)); temp += b(j)*K_der(out_vectors(j), out_vectors(i));
} }
for (long j = 0; j < dec_funct.support_vectors.nr(); ++j) for (long j = 0; j < dec_funct.basis_vectors.nr(); ++j)
{ {
temp -= dec_funct.alpha(j)*K_der(dec_funct.support_vectors(j), out_vectors(i) ); temp -= dec_funct.alpha(j)*K_der(dec_funct.basis_vectors(j), out_vectors(i) );
} }
// store the gradient for out_vectors[i] into result in the proper spot // store the gradient for out_vectors[i] into result in the proper spot
...@@ -529,7 +529,7 @@ namespace dlib ...@@ -529,7 +529,7 @@ namespace dlib
{ {
for (long c = 0; c < K.nc(); ++c) for (long c = 0; c < K.nc(); ++c)
{ {
K(r,c) = kernel(lisf[r], dec_funct.support_vectors(c)); K(r,c) = kernel(lisf[r], dec_funct.basis_vectors(c));
} }
} }
...@@ -556,7 +556,7 @@ namespace dlib ...@@ -556,7 +556,7 @@ namespace dlib
// Do a final reoptimization of beta just to make sure it is optimal given the new // Do a final reoptimization of beta just to make sure it is optimal given the new
// set of support vectors. // set of basis vectors.
for (long r = 0; r < K_inv.nr(); ++r) for (long r = 0; r < K_inv.nr(); ++r)
{ {
for (long c = 0; c < K_inv.nc(); ++c) for (long c = 0; c < K_inv.nc(); ++c)
...@@ -569,7 +569,7 @@ namespace dlib ...@@ -569,7 +569,7 @@ namespace dlib
{ {
for (long c = 0; c < K.nc(); ++c) for (long c = 0; c < K.nc(); ++c)
{ {
K(r,c) = kernel(out_vectors(r), dec_funct.support_vectors(c)); K(r,c) = kernel(out_vectors(r), dec_funct.basis_vectors(c));
} }
} }
......
...@@ -378,9 +378,9 @@ namespace ...@@ -378,9 +378,9 @@ namespace
DLIB_TEST_MSG(mean(peg_cv) > 0.9, peg_cv); DLIB_TEST_MSG(mean(peg_cv) > 0.9, peg_cv);
DLIB_TEST_MSG(mean(peg_c_cv) > 0.9, peg_c_cv); DLIB_TEST_MSG(mean(peg_c_cv) > 0.9, peg_c_cv);
const long num_sv = trainer.train(x,y).support_vectors.size(); const long num_sv = trainer.train(x,y).basis_vectors.size();
print_spinner(); print_spinner();
const long num_rv = rvm_trainer.train(x,y).support_vectors.size(); const long num_rv = rvm_trainer.train(x,y).basis_vectors.size();
print_spinner(); print_spinner();
dlog << LDEBUG << "num sv: " << num_sv; dlog << LDEBUG << "num sv: " << num_sv;
dlog << LDEBUG << "num rv: " << num_rv; dlog << LDEBUG << "num rv: " << num_rv;
...@@ -394,14 +394,14 @@ namespace ...@@ -394,14 +394,14 @@ namespace
matrix<scalar_type> svm_reduced_error = test_binary_decision_function(df, x, y); matrix<scalar_type> svm_reduced_error = test_binary_decision_function(df, x, y);
print_spinner(); print_spinner();
dlog << LDEBUG << "svm reduced test error: " << svm_reduced_error; dlog << LDEBUG << "svm reduced test error: " << svm_reduced_error;
dlog << LDEBUG << "svm reduced num sv: " << df.support_vectors.size(); dlog << LDEBUG << "svm reduced num sv: " << df.basis_vectors.size();
DLIB_TEST(mean(svm_reduced_error) > 0.9); DLIB_TEST(mean(svm_reduced_error) > 0.9);
svm_cv = cross_validate_trainer(reduced(trainer,30), x,y, 4); svm_cv = cross_validate_trainer(reduced(trainer,30), x,y, 4);
dlog << LDEBUG << "svm reduced cv: " << svm_cv; dlog << LDEBUG << "svm reduced cv: " << svm_cv;
DLIB_TEST_MSG(mean(svm_cv) > 0.9, svm_cv); DLIB_TEST_MSG(mean(svm_cv) > 0.9, svm_cv);
DLIB_TEST(df.support_vectors.size() == 19); DLIB_TEST(df.basis_vectors.size() == 19);
dlog << LINFO << " end test_binary_classification()"; dlog << LINFO << " end test_binary_classification()";
} }
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment