Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
f1fe908a
Commit
f1fe908a
authored
Nov 18, 2017
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added loss_dot layer
parent
a0220801
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
208 additions
and
0 deletions
+208
-0
loss.h
dlib/dnn/loss.h
+105
-0
loss_abstract.h
dlib/dnn/loss_abstract.h
+62
-0
dnn.cpp
dlib/test/dnn.cpp
+41
-0
No files found.
dlib/dnn/loss.h
View file @
f1fe908a
...
...
@@ -2468,6 +2468,111 @@ namespace dlib
// ----------------------------------------------------------------------------------------
class
loss_dot_
{
public
:
typedef
matrix
<
float
,
0
,
1
>
training_label_type
;
typedef
matrix
<
float
,
0
,
1
>
output_label_type
;
template
<
typename
SUB_TYPE
,
typename
label_iterator
>
void
to_label
(
const
tensor
&
input_tensor
,
const
SUB_TYPE
&
sub
,
label_iterator
iter
)
const
{
const
tensor
&
output_tensor
=
sub
.
get_output
();
DLIB_CASSERT
(
sub
.
sample_expansion_factor
()
==
1
);
DLIB_CASSERT
(
input_tensor
.
num_samples
()
!=
0
);
DLIB_CASSERT
(
input_tensor
.
num_samples
()
%
sub
.
sample_expansion_factor
()
==
0
);
DLIB_CASSERT
(
input_tensor
.
num_samples
()
==
output_tensor
.
num_samples
());
for
(
long
i
=
0
;
i
<
output_tensor
.
num_samples
();
++
i
)
*
iter
++
=
trans
(
rowm
(
mat
(
output_tensor
),
i
));
}
template
<
typename
const_label_iterator
,
typename
SUBNET
>
double
compute_loss_value_and_gradient
(
const
tensor
&
input_tensor
,
const_label_iterator
truth
,
SUBNET
&
sub
)
const
{
const
tensor
&
output_tensor
=
sub
.
get_output
();
tensor
&
grad
=
sub
.
get_gradient_input
();
DLIB_CASSERT
(
sub
.
sample_expansion_factor
()
==
1
);
DLIB_CASSERT
(
input_tensor
.
num_samples
()
!=
0
);
DLIB_CASSERT
(
input_tensor
.
num_samples
()
%
sub
.
sample_expansion_factor
()
==
0
);
DLIB_CASSERT
(
input_tensor
.
num_samples
()
==
grad
.
num_samples
());
DLIB_CASSERT
(
input_tensor
.
num_samples
()
==
output_tensor
.
num_samples
());
const
long
network_output_dims
=
output_tensor
.
size
()
/
output_tensor
.
num_samples
();
// The loss we output is the average loss over the mini-batch.
const
double
scale
=
1
.
0
/
output_tensor
.
num_samples
();
double
loss
=
0
;
float
*
g
=
grad
.
host
();
const
float
*
out_data
=
output_tensor
.
host
();
for
(
long
i
=
0
;
i
<
output_tensor
.
num_samples
();
++
i
)
{
DLIB_CASSERT
(
truth
->
size
()
==
network_output_dims
,
"The network must output a vector with the same dimensionality as the training labels. "
<<
"
\n
truth->size(): "
<<
truth
->
size
()
<<
"
\n
network_output_dims: "
<<
network_output_dims
);
const
float
*
t
=
&
(
*
truth
++
)(
0
);
for
(
long
j
=
0
;
j
<
network_output_dims
;
++
j
)
{
g
[
j
]
=
-
t
[
j
]
*
scale
;
loss
-=
out_data
[
j
]
*
t
[
j
];
}
g
+=
network_output_dims
;
out_data
+=
network_output_dims
;
}
return
loss
*
scale
;
}
friend
void
serialize
(
const
loss_dot_
&
,
std
::
ostream
&
out
)
{
serialize
(
"loss_dot_"
,
out
);
}
friend
void
deserialize
(
loss_dot_
&
,
std
::
istream
&
in
)
{
std
::
string
version
;
deserialize
(
version
,
in
);
if
(
version
!=
"loss_dot_"
)
throw
serialization_error
(
"Unexpected version found while deserializing dlib::loss_dot_."
);
}
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
out
,
const
loss_dot_
&
)
{
out
<<
"loss_dot"
;
return
out
;
}
friend
void
to_xml
(
const
loss_dot_
&
/*item*/
,
std
::
ostream
&
out
)
{
out
<<
"<loss_dot/>"
;
}
};
template
<
typename
SUBNET
>
using
loss_dot
=
add_loss_layer
<
loss_dot_
,
SUBNET
>
;
// ----------------------------------------------------------------------------------------
}
...
...
dlib/dnn/loss_abstract.h
View file @
f1fe908a
...
...
@@ -1250,6 +1250,68 @@ namespace dlib
template
<
typename
SUBNET
>
using
loss_mean_squared_per_pixel
=
add_loss_layer
<
loss_mean_squared_per_pixel_
,
SUBNET
>
;
// ----------------------------------------------------------------------------------------
class
loss_dot_
{
/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, selecting this loss means you want
maximize the dot product between the output of a network and a set of
training vectors. The loss is therefore the negative dot product. To be
very specific, if X is the output vector of a network and Y is a training
label (also a vector), then the loss for this training sample is: -dot(X,Y)
!*/
public
:
typedef
matrix
<
float
,
0
,
1
>
training_label_type
;
typedef
matrix
<
float
,
0
,
1
>
output_label_type
;
template
<
typename
SUB_TYPE
,
typename
label_iterator
>
void
to_label
(
const
tensor
&
input_tensor
,
const
SUB_TYPE
&
sub
,
label_iterator
iter
)
const
;
/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
and the output labels are simply the final network outputs stuffed into a
vector. To be very specific, the output is the following for all valid i:
*(iter+i) == trans(rowm(mat(sub.get_output()),i))
!*/
template
<
typename
const_label_iterator
,
typename
SUBNET
>
double
compute_loss_value_and_gradient
(
const
tensor
&
input_tensor
,
const_label_iterator
truth
,
SUBNET
&
sub
)
const
;
/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
- Let NETWORK_OUTPUT_DIMS == sub.get_output().size()/sub.get_output().num_samples()
- for all idx such that 0 <= idx < sub.get_output().num_samples():
- NETWORK_OUTPUT_DIMS == (*(truth + idx)).size()
!*/
};
template
<
typename
SUBNET
>
using
loss_dot
=
add_loss_layer
<
loss_dot_
,
SUBNET
>
;
// ----------------------------------------------------------------------------------------
}
...
...
dlib/test/dnn.cpp
View file @
f1fe908a
...
...
@@ -3009,6 +3009,46 @@ namespace
dlib
::
deserialize
(
net2
,
in
);
}
// ----------------------------------------------------------------------------------------
void
test_loss_dot
()
{
print_spinner
();
std
::
vector
<
matrix
<
float
,
0
,
1
>>
samples
;
std
::
vector
<
matrix
<
float
,
0
,
1
>>
labels
;
const
matrix
<
float
>
proj
=
matrix_cast
<
float
>
(
randm
(
2
,
3
));
for
(
int
i
=
0
;
i
<
128
;
++
i
)
{
// The task is going to be to learn the matrix proj. So we make our
// training data thusly:
matrix
<
float
,
0
,
1
>
x
=
matrix_cast
<
float
>
(
randm
(
3
,
1
));
matrix
<
float
,
0
,
1
>
y
=
normalize
(
proj
*
x
);
samples
.
push_back
(
x
);
labels
.
push_back
(
y
);
}
using
net_type
=
loss_dot
<
l2normalize
<
fc_no_bias
<
2
,
input
<
matrix
<
float
,
0
,
1
>>
>>>
;
net_type
net
;
dnn_trainer
<
net_type
>
trainer
(
net
,
sgd
(
1e-4
,
0.9
));
trainer
.
set_learning_rate
(
0.01
);
trainer
.
set_min_learning_rate
(
0.0000001
);
trainer
.
set_mini_batch_size
(
128
);
trainer
.
set_max_num_epochs
(
50000
);
trainer
.
train
(
samples
,
labels
);
for
(
size_t
i
=
0
;
i
<
samples
.
size
();
++
i
)
{
DLIB_TEST
(
std
::
abs
(
1
-
dot
(
net
(
samples
[
i
]),
labels
[
i
]))
<
0.001
);
}
}
// ----------------------------------------------------------------------------------------
class
dnn_tester
:
public
tester
...
...
@@ -3095,6 +3135,7 @@ namespace
test_loss_multiclass_per_pixel_with_noise_and_pixels_to_ignore
();
test_loss_multiclass_per_pixel_weighted
();
test_serialization
();
test_loss_dot
();
}
void
perform_test
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment