Commit fb542d70 authored by Davis King's avatar Davis King

Added the make_symmetric() function and modified the eigenvalue decomposition

code so that it uses the more optimized paths when this matrix operator is
present.

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%403816
parent 3eb5d816
......@@ -47,6 +47,11 @@ namespace dlib
const matrix_exp<EXP>& A
);
template <typename EXP>
eigenvalue_decomposition(
const matrix_op<op_make_symmetric<EXP> >& A
);
long dim (
) const;
......@@ -186,6 +191,45 @@ namespace dlib
}
}
// ----------------------------------------------------------------------------------------
template <typename matrix_exp_type>
template <typename EXP>
eigenvalue_decomposition<matrix_exp_type>::
eigenvalue_decomposition(
const matrix_op<op_make_symmetric<EXP> >& A
)
{
COMPILE_TIME_ASSERT((is_same_type<type, typename EXP::type>::value));
// make sure requires clause is not broken
DLIB_ASSERT(A.nr() == A.nc() && A.size() > 0,
"\teigenvalue_decomposition::eigenvalue_decomposition(A)"
<< "\n\tYou can only use this on square matrices"
<< "\n\tA.nr(): " << A.nr()
<< "\n\tA.nc(): " << A.nc()
<< "\n\tA.size(): " << A.size()
<< "\n\tthis: " << this
);
n = A.nc();
V.set_size(n,n);
d.set_size(n);
e.set_size(n);
V = A;
// Tridiagonalize.
tred2();
// Diagonalize.
tql2();
}
// ----------------------------------------------------------------------------------------
template <typename matrix_exp_type>
......
......@@ -1596,7 +1596,9 @@ convergence:
}
else
{
return eigenvalue_decomposition<EXP>(m).get_real_eigenvalues();
// Call .ref() so that the symmetric matrix overload can take effect if m
// has the appropriate type.
return eigenvalue_decomposition<EXP>(m.ref()).get_real_eigenvalues();
}
}
......
......@@ -675,6 +675,35 @@ namespace dlib
- #get_v() == all the eigenvectors of A
!*/
template <typename EXP>
eigenvalue_decomposition(
const matrix_op<op_make_symmetric<EXP> >& A
);
/*!
requires
- A.nr() == A.nc()
- A.size() > 0
- EXP::type == eigenvalue_decomposition::type
ensures
- #dim() == A.nr()
- computes the eigenvalue decomposition of the symmetric matrix A. Does so
using a method optimized for symmetric matrices.
- #get_eigenvalues() == the eigenvalues of A
- #get_v() == all the eigenvectors of A
- moreover, since A is symmetric there won't be any imaginary eigenvalues. So
we will have:
- #get_imag_eigenvalues() == 0
- #get_real_eigenvalues() == the eigenvalues of A
- #get_pseudo_v() == all the eigenvectors of A
- diagm(#get_real_eigenvalues()) == #get_pseudo_d()
Note that the symmetric matrix operator is created by the
dlib::make_symmetric() function. This function simply reflects
the lower triangular part of a square matrix into the upper triangular
part to create a symmetric matrix. It can also be used to denote that a
matrix is already symmetric using the C++ type system.
!*/
long dim (
) const;
/*!
......
......@@ -2732,6 +2732,43 @@ namespace dlib
return matrix_op<op>(op(a.ref(),b.ref()));
}
// ----------------------------------------------------------------------------------------
template <typename M>
struct op_make_symmetric : basic_op_m<M>
{
op_make_symmetric ( const M& m_) : basic_op_m<M>(m_){}
const static long cost = M::cost+1;
typedef typename M::type type;
typedef const typename M::const_ret_type const_ret_type;
const_ret_type apply ( long r, long c) const
{
if (r >= c)
return this->m(r,c);
else
return this->m(c,r);
}
};
template <
typename EXP
>
const matrix_op<op_make_symmetric<EXP> > make_symmetric (
const matrix_exp<EXP>& m
)
{
DLIB_ASSERT(m.nr() == m.nc(),
"\tconst matrix make_symmetric(m)"
<< "\n\t m must be a square matrix"
<< "\n\t m.nr(): " << m.nr()
<< "\n\t m.nc(): " << m.nc()
);
typedef op_make_symmetric<EXP> op;
return matrix_op<op>(op(m.ref()));
}
// ----------------------------------------------------------------------------------------
template <typename M>
......
......@@ -144,6 +144,26 @@ namespace dlib
- M(r,c) == 0
!*/
// ----------------------------------------------------------------------------------------
const matrix_exp make_symmetric (
const matrix_exp& m
);
/*!
requires
- m.nr() == m.nc()
(i.e. m must be a square matrix)
ensures
- returns a matrix M such that:
- M::type == the same type that was in m
- M has the same dimensions as m
- M is a symmetric matrix, that is, M == trans(M) and
it is constructed from the lower triangular part of m. Specifically,
we have:
- lowerm(M) == lowerm(m)
- upperm(M) == trans(lowerm(m))
!*/
// ----------------------------------------------------------------------------------------
template <
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment