Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
ffaa322f
Commit
ffaa322f
authored
Jan 27, 2018
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added loss_multimulticlass_log_
parent
72fbed20
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
282 additions
and
0 deletions
+282
-0
loss.h
dlib/dnn/loss.h
+0
-0
loss_abstract.h
dlib/dnn/loss_abstract.h
+222
-0
dnn.cpp
dlib/test/dnn.cpp
+60
-0
No files found.
dlib/dnn/loss.h
View file @
ffaa322f
This diff is collapsed.
Click to expand it.
dlib/dnn/loss_abstract.h
View file @
ffaa322f
...
...
@@ -362,6 +362,228 @@ namespace dlib
template
<
typename
SUBNET
>
using
loss_multiclass_log
=
add_loss_layer
<
loss_multiclass_log_
,
SUBNET
>
;
// ----------------------------------------------------------------------------------------
class
loss_multimulticlass_log_
{
/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements a collection of
multiclass classifiers. An example will make its use clear. So suppose,
for example, that you want to make something that takes a picture of a
vehicle and answers the following questions:
- What type of vehicle is it? A sedan or a truck?
- What color is it? red, green, blue, gray, or black?
You need two separate multi-class classifiers to do this. One to decide
the type of vehicle, and another to decide the color. The
loss_multimulticlass_log_ allows you to pack these two classifiers into one
neural network. This means that when you use the network to process an
image it will output 2 labels for each image, the type label and the color
label.
To create a loss_multimulticlass_log_ for the above case you would
construct it as follows:
std::map<std::string,std::vector<std::string>> labels;
labels["type"] = {"sedan", "truck"};
labels["color"] = {"red", "green", "blue", "gray", "black"};
loss_multimulticlass_log_ myloss(labels);
Then you could use myloss with a network object and train it to do this
task. More generally, you can use any number of classifiers and labels
when using this object. Finally, each of the classifiers uses a standard
multi-class logistic regression loss.
!*/
public
:
loss_multimulticlass_log_
(
);
/*!
ensures
- #number_of_labels() == 0
- #get_labels().size() == 0
!*/
loss_multimulticlass_log_
(
const
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
string
>>&
labels
);
/*!
requires
- Each vector in labels must contain at least 2 strings. I.e. each
classifier must have at least two possible labels.
ensures
- #number_of_labels() == the total number of strings in all the
std::vectors in labels.
- #number_of_classifiers() == labels.size()
- #get_labels() == labels
!*/
unsigned
long
number_of_labels
(
)
const
;
/*!
ensures
- returns the total number of labels known to this loss. This is the count of
all the labels in each classifier.
!*/
unsigned
long
number_of_classifiers
(
)
const
;
/*!
ensures
- returns the number of classifiers defined by this loss.
!*/
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
get_labels
(
)
const
;
/*!
ensures
- returns the names of the classifiers and labels used by this loss. In
particular, if the returned object is L then:
- L[CLASS] == the set of labels used by the classifier CLASS.
- L.size() == number_of_classifiers()
- The count of strings in the vectors in L == number_of_labels()
!*/
class
classifier_output
{
/*!
WHAT THIS OBJECT REPRESENTS
This object stores the predictions from one of the classifiers in
loss_multimulticlass_log_. It allows you to find out the most likely
string label predicted by that classifier, as well as get the class
conditional probability of any of the classes in the classifier.
!*/
public
:
classifier_output
(
);
/*!
ensures
- #num_classes() == 0
!*/
size_t
num_classes
(
)
const
;
/*!
ensures
- returns the number of possible classes output by this classifier.
!*/
double
probability_of_class
(
size_t
i
)
const
;
/*!
requires
- i < num_classes()
ensures
- returns the probability that the true class has a label of label(i).
- The sum of probability_of_class(j) for j in the range [0, num_classes()) is always 1.
!*/
const
std
::
string
&
label
(
size_t
i
)
const
;
/*!
requires
- i < num_classes()
ensures
- returns the string label for the ith class.
!*/
operator
std
::
string
(
)
const
;
/*!
requires
- num_classes() != 0
ensures
- returns the string label for the most probable class.
!*/
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
out
,
const
classifier_output
&
item
);
/*!
requires
- num_classes() != 0
ensures
- prints the most probable class label to out.
!*/
};
// Both training_label_type and output_label_type should always have sizes equal to
// number_of_classifiers(). That is, the std::map should have an entry for every
// classifier known to this loss.
typedef
std
::
map
<
std
::
string
,
std
::
string
>
training_label_type
;
typedef
std
::
map
<
std
::
string
,
classifier_output
>
output_label_type
;
template
<
typename
SUB_TYPE
,
typename
label_iterator
>
void
to_label
(
const
tensor
&
input_tensor
,
const
SUB_TYPE
&
sub
,
label_iterator
iter
)
const
;
/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- number_of_labels() != 0
- sub.get_output().k() == number_of_labels()
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
!*/
template
<
typename
const_label_iterator
,
typename
SUBNET
>
double
compute_loss_value_and_gradient
(
const
tensor
&
input_tensor
,
const_label_iterator
truth
,
SUBNET
&
sub
)
const
;
/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- number_of_labels() != 0
- sub.get_output().k() == number_of_labels()
It should be noted that the last layer in your network should usually
be an fc layer. If so, you can satisfy this requirement of k() being
number_of_labels() by calling set_num_outputs() prior to training your
network like so:
your_network.subnet().layer_details().set_num_outputs(your_network.loss_details().number_of_labels());
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
- All the std::maps pointed to by truth contain entries for all the
classifiers known to this loss. That is, it must be valid to call
truth[i][classifier] for any of the classifiers known to this loss. To
say this another way, all the training samples must contain labels for
each of the classifiers defined by this loss.
To really belabor this, this also means that truth[i].size() ==
get_labels().size() and that both truth[i] and get_labels() have the same
set of key strings. It also means that the value strings in truth[i]
must be strings known to the loss, i.e. they are valid labels according
to get_labels().
!*/
};
template
<
typename
SUBNET
>
using
loss_multimulticlass_log
=
add_loss_layer
<
loss_multimulticlass_log_
,
SUBNET
>
;
// Allow comparison between classifier_outputs and std::string to check if the
// predicted class is a particular string.
inline
bool
operator
==
(
const
std
::
string
&
lhs
,
const
loss_multimulticlass_log_
::
classifier_output
&
rhs
)
{
return
lhs
==
static_cast
<
const
std
::
string
&>
(
rhs
);
}
inline
bool
operator
==
(
const
loss_multimulticlass_log_
::
classifier_output
&
lhs
,
const
std
::
string
&
rhs
)
{
return
rhs
==
static_cast
<
const
std
::
string
&>
(
lhs
);
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
...
...
dlib/test/dnn.cpp
View file @
ffaa322f
...
...
@@ -3094,6 +3094,65 @@ namespace
}
}
// ----------------------------------------------------------------------------------------
void
test_loss_multimulticlass_log
()
{
print_spinner
();
std
::
map
<
string
,
std
::
vector
<
string
>>
all_labels
;
all_labels
[
"c1"
]
=
{
"a"
,
"b"
,
"c"
};
all_labels
[
"c2"
]
=
{
"d"
,
"e"
,
"f"
};
// make training data
std
::
vector
<
matrix
<
float
>>
samples
;
std
::
vector
<
std
::
map
<
string
,
string
>>
labels
;
for
(
int
i
=
0
;
i
<
3
;
++
i
)
{
for
(
int
j
=
0
;
j
<
3
;
++
j
)
{
matrix
<
float
>
samp
(
2
,
3
);
samp
=
0
;
samp
(
0
,
i
)
=
1
;
samp
(
1
,
j
)
=
1
;
samples
.
push_back
(
samp
);
std
::
map
<
string
,
string
>
l
;
if
(
i
==
0
)
l
[
"c1"
]
=
"a"
;
if
(
i
==
1
)
l
[
"c1"
]
=
"b"
;
if
(
i
==
2
)
l
[
"c1"
]
=
"c"
;
if
(
j
==
0
)
l
[
"c2"
]
=
"d"
;
if
(
j
==
1
)
l
[
"c2"
]
=
"e"
;
if
(
j
==
2
)
l
[
"c2"
]
=
"f"
;
labels
.
push_back
(
l
);
}
}
using
net_type
=
loss_multimulticlass_log
<
fc
<
1
,
input
<
matrix
<
float
>>
>>
;
net_type
net
(
all_labels
);
net
.
subnet
().
layer_details
().
set_num_outputs
(
net
.
loss_details
().
number_of_labels
());
dnn_trainer
<
net_type
>
trainer
(
net
,
sgd
(
0.1
));
trainer
.
set_learning_rate
(
0.1
);
trainer
.
set_min_learning_rate
(
0.00001
);
trainer
.
set_iterations_without_progress_threshold
(
500
);
trainer
.
train
(
samples
,
labels
);
auto
predicted_labels
=
net
(
samples
);
// make sure the network predicts the right labels
for
(
size_t
i
=
0
;
i
<
samples
.
size
();
++
i
)
{
DLIB_TEST
(
predicted_labels
[
i
][
"c1"
]
==
labels
[
i
][
"c1"
]);
DLIB_TEST
(
predicted_labels
[
i
][
"c2"
]
==
labels
[
i
][
"c2"
]);
}
}
// ----------------------------------------------------------------------------------------
class
dnn_tester
:
public
tester
...
...
@@ -3182,6 +3241,7 @@ namespace
test_loss_multiclass_per_pixel_weighted
();
test_serialization
();
test_loss_dot
();
test_loss_multimulticlass_log
();
}
void
perform_test
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment