test_index_composite.py 13 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the BSD+Patents license found in the
# LICENSE file in the root directory of this source tree.

#! /usr/bin/env python2

""" more elaborate that test_index.py """

import numpy as np
import unittest
import faiss
import os
import tempfile

def get_dataset_2(d, nb, nt, nq):
    """A dataset that is not completely random but still challenging to
    index
    """
    d1 = 10     # intrinsic dimension (more or less)
    n = nb + nt + nq
    rs = np.random.RandomState(1234)
    x = rs.normal(size=(n, d1))
    x = np.dot(x, rs.rand(d1, d))
    # now we have a d1-dim ellipsoid in d-dimensional space
    # higher factor (>4) -> higher frequency -> less linear
    x = x * (rs.rand(d) * 4 + 0.1)
    x = np.sin(x)
    x = x.astype('float32')
    return x[:nt], x[nt:-nq], x[-nq:]



class TestRemove(unittest.TestCase):

    def do_merge_then_remove(self, ondisk):
        d = 10
        nb = 1000
        nq = 200
        nt = 200

        xt, xb, xq = get_dataset_2(d, nb, nt, nq)

        quantizer = faiss.IndexFlatL2(d)

        index1 = faiss.IndexIVFFlat(quantizer, d, 20)
        index1.train(xt)

        filename = None
        if ondisk:
            filename = tempfile.mkstemp()[1]
            invlists = faiss.OnDiskInvertedLists(
                index1.nlist, index1.code_size,
                filename)
            index1.replace_invlists(invlists)

        index1.add(xb[:int(nb / 2)])

        index2 = faiss.IndexIVFFlat(quantizer, d, 20)
        assert index2.is_trained
        index2.add(xb[int(nb / 2):])

        Dref, Iref = index1.search(xq, 10)
        index1.merge_from(index2, int(nb / 2))

        assert index1.ntotal == nb

        index1.remove_ids(faiss.IDSelectorRange(int(nb / 2), nb))

        assert index1.ntotal == int(nb / 2)
        Dnew, Inew = index1.search(xq, 10)

        assert np.all(Dnew == Dref)
        assert np.all(Inew == Iref)

        if filename is not None:
            os.unlink(filename)

    def test_remove_regular(self):
        self.do_merge_then_remove(False)

    def test_remove_ondisk(self):
        self.do_merge_then_remove(True)

    def test_remove(self):
        # only tests the python interface

        index = faiss.IndexFlat(5)
        xb = np.zeros((10, 5), dtype='float32')
        xb[:, 0] = np.arange(10) + 1000
        index.add(xb)
        index.remove_ids(np.arange(5) * 2)
        xb2 = faiss.vector_float_to_array(index.xb).reshape(5, 5)
        assert np.all(xb2[:, 0] == xb[np.arange(5) * 2 + 1, 0])

    def test_remove_id_map(self):
        sub_index = faiss.IndexFlat(5)
        xb = np.zeros((10, 5), dtype='float32')
        xb[:, 0] = np.arange(10) + 1000
        index = faiss.IndexIDMap2(sub_index)
        index.add_with_ids(xb, np.arange(10) + 100)
        assert index.reconstruct(104)[0] == 1004
        index.remove_ids(np.array([103]))
        assert index.reconstruct(104)[0] == 1004
        try:
            index.reconstruct(103)
        except:
            pass
        else:
            assert False, 'should have raised an exception'

    def test_remove_id_map_2(self):
        # from https://github.com/facebookresearch/faiss/issues/255
        rs = np.random.RandomState(1234)
        X = rs.randn(10, 10).astype(np.float32)
        idx = np.array([0, 10, 20, 30, 40, 5, 15, 25, 35, 45], np.int64)
        remove_set = np.array([10, 30], dtype=np.int64)
        index = faiss.index_factory(10, 'IDMap,Flat')
        index.add_with_ids(X[:5, :], idx[:5])
        index.remove_ids(remove_set)
        index.add_with_ids(X[5:, :], idx[5:])

        print (index.search(X, 1))

        for i in range(10):
            _, searchres = index.search(X[i:i + 1, :], 1)
            if idx[i] in remove_set:
                assert searchres[0] != idx[i]
            else:
                assert searchres[0] == idx[i]



class TestRangeSearch(unittest.TestCase):

    def test_range_search_id_map(self):
        sub_index = faiss.IndexFlat(5, 1)  # L2 search instead of inner product
        xb = np.zeros((10, 5), dtype='float32')
        xb[:, 0] = np.arange(10) + 1000
        index = faiss.IndexIDMap2(sub_index)
        index.add_with_ids(xb, np.arange(10) + 100)
        dist = float(np.linalg.norm(xb[3] - xb[0])) * 0.99
        res_subindex = sub_index.range_search(xb[[0], :], dist)
        res_index = index.range_search(xb[[0], :], dist)
        assert len(res_subindex[2]) == 2
        np.testing.assert_array_equal(res_subindex[2] + 100, res_index[2])


class TestUpdate(unittest.TestCase):

    def test_update(self):
        d = 64
        nb = 1000
        nt = 1500
        nq = 100
        np.random.seed(123)
        xb = np.random.random(size=(nb, d)).astype('float32')
        xt = np.random.random(size=(nt, d)).astype('float32')
        xq = np.random.random(size=(nq, d)).astype('float32')

        index = faiss.index_factory(d, "IVF64,Flat")
        index.train(xt)
        index.add(xb)
        index.nprobe = 32
        D, I = index.search(xq, 5)

        index.make_direct_map()
        recons_before = np.vstack([index.reconstruct(i) for i in range(nb)])

        # revert order of the 200 first vectors
        nu = 200
        index.update_vectors(np.arange(nu), xb[nu - 1::-1].copy())

        recons_after = np.vstack([index.reconstruct(i) for i in range(nb)])

        # make sure reconstructions remain the same
        diff_recons = recons_before[:nu] - recons_after[nu - 1::-1]
        assert np.abs(diff_recons).max() == 0

        D2, I2 = index.search(xq, 5)

        assert np.all(D == D2)

        gt_map = np.arange(nb)
        gt_map[:nu] = np.arange(nu, 0, -1) - 1
        eqs = I.ravel() == gt_map[I2.ravel()]

        assert np.all(eqs)


class TestPCAWhite(unittest.TestCase):

    def test_white(self):

        # generate data
        d = 4
        nt = 1000
        nb = 200
        nq = 200

        # normal distribition
        x = faiss.randn((nt + nb + nq) * d, 1234).reshape(nt + nb + nq, d)

        index = faiss.index_factory(d, 'Flat')

        xt = x[:nt]
        xb = x[nt:-nq]
        xq = x[-nq:]

        # NN search on normal distribution
        index.add(xb)
        Do, Io = index.search(xq, 5)

        # make distribution very skewed
        x *= [10, 4, 1, 0.5]
        rr, _ = np.linalg.qr(faiss.randn(d * d).reshape(d, d))
        x = np.dot(x, rr).astype('float32')

        xt = x[:nt]
        xb = x[nt:-nq]
        xq = x[-nq:]

        # L2 search on skewed distribution
        index = faiss.index_factory(d, 'Flat')

        index.add(xb)
        Dl2, Il2 = index.search(xq, 5)

        # whiten + L2 search on L2 distribution
        index = faiss.index_factory(d, 'PCAW%d,Flat' % d)

        index.train(xt)
        index.add(xb)
        Dw, Iw = index.search(xq, 5)

        # make sure correlation of whitened results with original
        # results is much better than simple L2 distances
        # should be 961 vs. 264
        assert (faiss.eval_intersection(Io, Iw) >
                2 * faiss.eval_intersection(Io, Il2))


class TestTransformChain(unittest.TestCase):

    def test_chain(self):

        # generate data
        d = 4
        nt = 1000
        nb = 200
        nq = 200

        # normal distribition
        x = faiss.randn((nt + nb + nq) * d, 1234).reshape(nt + nb + nq, d)

        # make distribution very skewed
        x *= [10, 4, 1, 0.5]
        rr, _ = np.linalg.qr(faiss.randn(d * d).reshape(d, d))
        x = np.dot(x, rr).astype('float32')

        xt = x[:nt]
        xb = x[nt:-nq]
        xq = x[-nq:]

        index = faiss.index_factory(d, "L2norm,PCA2,L2norm,Flat")

        assert index.chain.size() == 3
        l2_1 = faiss.downcast_VectorTransform(index.chain.at(0))
        assert l2_1.norm == 2
        pca = faiss.downcast_VectorTransform(index.chain.at(1))
        assert not pca.is_trained
        index.train(xt)
        assert pca.is_trained

        index.add(xb)
        D, I = index.search(xq, 5)

        # do the computation manually and check if we get the same result
        def manual_trans(x):
            x = x.copy()
            faiss.normalize_L2(x)
            x = pca.apply_py(x)
            faiss.normalize_L2(x)
            return x

        index2 = faiss.IndexFlatL2(2)
        index2.add(manual_trans(xb))
        D2, I2 = index2.search(manual_trans(xq), 5)

        assert np.all(I == I2)

class TestRareIO(unittest.TestCase):

    def compare_results(self, index1, index2, xq):

        Dref, Iref = index1.search(xq, 5)
        Dnew, Inew = index2.search(xq, 5)

        assert np.all(Dref == Dnew)
        assert np.all(Iref == Inew)

    def do_mmappedIO(self, sparse, in_pretransform=False):
        d = 10
        nb = 1000
        nq = 200
        nt = 200
        xt, xb, xq = get_dataset_2(d, nb, nt, nq)

        quantizer = faiss.IndexFlatL2(d)
        index1 = faiss.IndexIVFFlat(quantizer, d, 20)
        if sparse:
            # makes the inverted lists sparse because all elements get
            # assigned to the same invlist
            xt += (np.ones(10) * 1000).astype('float32')

        if in_pretransform:
            # make sure it still works when wrapped in an IndexPreTransform
            tmp = index1
            index1 = faiss.IndexPreTransform(index1)
            index1.dont_dealloc_me = tmp

        index1.train(xt)
        index1.add(xb)

        _, fname = tempfile.mkstemp()
        try:

            faiss.write_index(index1, fname)

            index2 = faiss.read_index(fname)
            self.compare_results(index1, index2, xq)

            index3 = faiss.read_index(fname, faiss.IO_FLAG_MMAP)
            self.compare_results(index1, index3, xq)
        finally:
            if os.path.exists(fname):
                os.unlink(fname)

    def test_mmappedIO_sparse(self):
        self.do_mmappedIO(True)

    def test_mmappedIO_full(self):
        self.do_mmappedIO(False)

    def test_mmappedIO_pretrans(self):
        self.do_mmappedIO(False, True)


class TestIVFFlatDedup(unittest.TestCase):

    def normalize_res(self, D, I):
        dmax = D[-1]
        res = [(d, i) for d, i in zip(D, I) if d < dmax]
        res.sort()
        return res

    def test_dedup(self):
        d = 10
        nb = 1000
        nq = 200
        nt = 500
        xt, xb, xq = get_dataset_2(d, nb, nt, nq)

        # introduce duplicates
        xb[500:900:2] = xb[501:901:2]
        xb[901::4] = xb[900::4]
        xb[902::4] = xb[900::4]
        xb[903::4] = xb[900::4]

        # also in the train set
        xt[201::2] = xt[200::2]

        quantizer = faiss.IndexFlatL2(d)
        index_new = faiss.IndexIVFFlatDedup(quantizer, d, 20)

        index_new.verbose = True
        # should display
        # IndexIVFFlatDedup::train: train on 350 points after dedup (was 500 points)
        index_new.train(xt)

        index_ref = faiss.IndexIVFFlat(quantizer, d, 20)
        assert index_ref.is_trained

        index_ref.nprobe = 5
        index_ref.add(xb)
        index_new.nprobe = 5
        index_new.add(xb)

        Dref, Iref = index_ref.search(xq, 20)
        Dnew, Inew = index_new.search(xq, 20)

        for i in range(nq):
            ref = self.normalize_res(Dref[i], Iref[i])
            new = self.normalize_res(Dnew[i], Inew[i])
            assert ref == new

        # test I/O
        _, tmpfile = tempfile.mkstemp()
        try:
            faiss.write_index(index_new, tmpfile)
            index_st = faiss.read_index(tmpfile)
        finally:
            if os.path.exists(tmpfile):
                os.unlink(tmpfile)
        Dst, Ist = index_st.search(xq, 20)

        for i in range(nq):
            new = self.normalize_res(Dnew[i], Inew[i])
            st = self.normalize_res(Dst[i], Ist[i])
            assert st == new

        # test remove
        toremove = np.hstack((np.arange(3, 1000, 5), np.arange(850, 950)))
        index_ref.remove_ids(toremove)
        index_new.remove_ids(toremove)

        Dref, Iref = index_ref.search(xq, 20)
        Dnew, Inew = index_new.search(xq, 20)

        for i in range(nq):
            ref = self.normalize_res(Dref[i], Iref[i])
            new = self.normalize_res(Dnew[i], Inew[i])
            assert ref == new


class TestSerialize(unittest.TestCase):

    def test_serialize_to_vector(self):
        d = 10
        nb = 1000
        nq = 200
        nt = 500
        xt, xb, xq = get_dataset_2(d, nb, nt, nq)

        index = faiss.IndexFlatL2(d)
        index.add(xb)

        Dref, Iref = index.search(xq, 5)

        writer = faiss.VectorIOWriter()
        faiss.write_index(index, writer)

        ar_data = faiss.vector_to_array(writer.data)

        # direct transfer of vector
        reader = faiss.VectorIOReader()
        reader.data.swap(writer.data)

        index2 = faiss.read_index(reader)

        Dnew, Inew = index2.search(xq, 5)
        assert np.all(Dnew == Dref) and np.all(Inew == Iref)

        # from intermediate numpy array
        reader = faiss.VectorIOReader()
        faiss.copy_array_to_vector(ar_data, reader.data)

        index3 = faiss.read_index(reader)

        Dnew, Inew = index3.search(xq, 5)
        assert np.all(Dnew == Dref) and np.all(Inew == Iref)



if __name__ == '__main__':
    unittest.main()