• Lucas Hosseini's avatar
    Python install (#469) · 21fbc56d
    Lucas Hosseini authored
    * add a working setup.py
    
    * Rename setup.py to python/setup.py
    
    * Fix paths in setup.py
    
    * Use relative imports for python3 compatibility.
    
    * Add python/install Makefile target.
    
    * Fix test target in Makefile.
    21fbc56d
setup.py 1.73 KB
from __future__ import print_function
from setuptools import setup, find_packages
import os
import shutil

here = os.path.abspath(os.path.dirname(__file__))

check_fpath = os.path.join("_swigfaiss.so")
if not os.path.exists(check_fpath):
    print("Could not find {}".format(check_fpath))
    print("Have you run `make` and `make py` "
          "(and optionally `cd gpu && make && make py && cd ..`)?")

# make the faiss python package dir
shutil.rmtree("faiss", ignore_errors=True)
os.mkdir("faiss")
shutil.copyfile("faiss.py", "faiss/__init__.py")
shutil.copyfile("swigfaiss.py", "faiss/swigfaiss.py")
shutil.copyfile("_swigfaiss.so", "faiss/_swigfaiss.so")
try:
    shutil.copyfile("_swigfaiss_gpu.so", "faiss/_swigfaiss_gpu.so")
    shutil.copyfile("swigfaiss_gpu.py", "faiss/swigfaiss_gpu.py")
except:
    pass

long_description="""
Faiss is a library for efficient similarity search and clustering of dense 
vectors. It contains algorithms that search in sets of vectors of any size,
 up to ones that possibly do not fit in RAM. It also contains supporting 
code for evaluation and parameter tuning. Faiss is written in C++ with 
complete wrappers for Python/numpy. Some of the most useful algorithms 
are implemented on the GPU. It is developed by Facebook AI Research.
"""
setup(
    name='faiss',
    version='0.1',
    description='A library for efficient similarity search and clustering of dense vectors',
    long_description=long_description,
    url='https://github.com/facebookresearch/faiss',
    author='Matthijs Douze, Jeff Johnson, Herve Jegou',
    author_email='matthijs@fb.com',
    license='BSD',
    keywords='search nearest neighbors',

    install_requires=['numpy'],
    packages=['faiss'],
    package_data={
        'faiss': ['*.so'],
    },

)