Transpose_8cuh_source.html 29.2 KB
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.5"/>
<title>Faiss: /tmp/faiss/gpu/utils/Transpose.cuh Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
  $(document).ready(function() { searchBox.OnSelectItem(0); });
</script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
 <tbody>
 <tr style="height: 56px;">
  <td style="padding-left: 0.5em;">
   <div id="projectname">Faiss
   </div>
  </td>
 </tr>
 </tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.5 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
  <div id="navrow1" class="tabs">
    <ul class="tablist">
      <li><a href="index.html"><span>Main&#160;Page</span></a></li>
      <li><a href="namespaces.html"><span>Namespaces</span></a></li>
      <li><a href="annotated.html"><span>Classes</span></a></li>
      <li class="current"><a href="files.html"><span>Files</span></a></li>
      <li>
        <div id="MSearchBox" class="MSearchBoxInactive">
        <span class="left">
          <img id="MSearchSelect" src="search/mag_sel.png"
               onmouseover="return searchBox.OnSearchSelectShow()"
               onmouseout="return searchBox.OnSearchSelectHide()"
               alt=""/>
          <input type="text" id="MSearchField" value="Search" accesskey="S"
               onfocus="searchBox.OnSearchFieldFocus(true)" 
               onblur="searchBox.OnSearchFieldFocus(false)" 
               onkeyup="searchBox.OnSearchFieldChange(event)"/>
          </span><span class="right">
            <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
          </span>
        </div>
      </li>
    </ul>
  </div>
  <div id="navrow2" class="tabs2">
    <ul class="tablist">
      <li><a href="files.html"><span>File&#160;List</span></a></li>
    </ul>
  </div>
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
     onmouseover="return searchBox.OnSearchSelectShow()"
     onmouseout="return searchBox.OnSearchSelectHide()"
     onkeydown="return searchBox.OnSearchSelectKey(event)">
<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark">&#160;</span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark">&#160;</span>Classes</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark">&#160;</span>Namespaces</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark">&#160;</span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark">&#160;</span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark">&#160;</span>Typedefs</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(6)"><span class="SelectionMark">&#160;</span>Enumerations</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(7)"><span class="SelectionMark">&#160;</span>Enumerator</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(8)"><span class="SelectionMark">&#160;</span>Friends</a></div>

<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0" 
        name="MSearchResults" id="MSearchResults">
</iframe>
</div>

<div id="nav-path" class="navpath">
  <ul>
<li class="navelem"><a class="el" href="dir_af0e5773a0d3761542ab6067d117c294.html">gpu</a></li><li class="navelem"><a class="el" href="dir_4b23abee0b4e5d71a28bc7475a9e97e1.html">utils</a></li>  </ul>
</div>
</div><!-- top -->
<div class="header">
  <div class="headertitle">
<div class="title">Transpose.cuh</div>  </div>
</div><!--header-->
<div class="contents">
<div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">/**</span></div>
<div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment"> * Copyright (c) 2015-present, Facebook, Inc.</span></div>
<div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="comment"> * All rights reserved.</span></div>
<div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="comment"> *</span></div>
<div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="comment"> * This source code is licensed under the BSD+Patents license found in the</span></div>
<div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="comment"> * LICENSE file in the root directory of this source tree.</span></div>
<div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="comment"> */</span></div>
<div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;</div>
<div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;</div>
<div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="preprocessor">#pragma once</span></div>
<div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="preprocessor"></span></div>
<div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="preprocessor">#include &quot;../../FaissAssert.h&quot;</span></div>
<div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="preprocessor">#include &quot;Tensor.cuh&quot;</span></div>
<div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="preprocessor">#include &quot;DeviceUtils.h&quot;</span></div>
<div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="preprocessor">#include &lt;cuda.h&gt;</span></div>
<div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;</div>
<div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="preprocessor">#include &lt;stdio.h&gt;</span></div>
<div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;</div>
<div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;<span class="keyword">namespace </span>faiss { <span class="keyword">namespace </span>gpu {</div>
<div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;</div>
<div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keyword">typename</span> IndexT&gt;</div>
<div class="line"><a name="l00022"></a><span class="lineno"><a class="line" href="structfaiss_1_1gpu_1_1TensorInfo.html">   22</a></span>&#160;<span class="keyword">struct </span><a class="code" href="structfaiss_1_1gpu_1_1TensorInfo.html">TensorInfo</a> {</div>
<div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;  <span class="keyword">static</span> constexpr <span class="keywordtype">int</span> kMaxDims = 8;</div>
<div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;</div>
<div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;  T* data;</div>
<div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;  IndexT sizes[kMaxDims];</div>
<div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;  IndexT strides[kMaxDims];</div>
<div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;  <span class="keywordtype">int</span> dims;</div>
<div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;};</div>
<div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;</div>
<div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keyword">typename</span> IndexT, <span class="keywordtype">int</span> Dim&gt;</div>
<div class="line"><a name="l00032"></a><span class="lineno"><a class="line" href="structfaiss_1_1gpu_1_1TensorInfoOffset.html">   32</a></span>&#160;<span class="keyword">struct </span><a class="code" href="structfaiss_1_1gpu_1_1TensorInfoOffset.html">TensorInfoOffset</a> {</div>
<div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;  __device__ <span class="keyword">inline</span> <span class="keyword">static</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <span class="keyword">get</span>(<span class="keyword">const</span> <a class="code" href="structfaiss_1_1gpu_1_1TensorInfo.html">TensorInfo&lt;T, IndexT&gt;</a>&amp; info,</div>
<div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;                                            IndexT linearId) {</div>
<div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;    IndexT offset = 0;</div>
<div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;</div>
<div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;<span class="preprocessor">#pragma unroll</span></div>
<div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;<span class="preprocessor"></span>    <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = Dim - 1; i &gt;= 0; --i) {</div>
<div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;      IndexT curDimIndex = linearId % info.sizes[i];</div>
<div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;      IndexT curDimOffset = curDimIndex * info.strides[i];</div>
<div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;</div>
<div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;      offset += curDimOffset;</div>
<div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;</div>
<div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;      <span class="keywordflow">if</span> (i &gt; 0) {</div>
<div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;        linearId /= info.sizes[i];</div>
<div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;      }</div>
<div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;    }</div>
<div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;</div>
<div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;    <span class="keywordflow">return</span> offset;</div>
<div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;  }</div>
<div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;};</div>
<div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;</div>
<div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keyword">typename</span> IndexT&gt;</div>
<div class="line"><a name="l00054"></a><span class="lineno"><a class="line" href="structfaiss_1_1gpu_1_1TensorInfoOffset_3_01T_00_01IndexT_00-1_01_4.html">   54</a></span>&#160;<span class="keyword">struct </span><a class="code" href="structfaiss_1_1gpu_1_1TensorInfoOffset.html">TensorInfoOffset</a>&lt;T, IndexT, -1&gt; {</div>
<div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;  __device__ <span class="keyword">inline</span> <span class="keyword">static</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <span class="keyword">get</span>(<span class="keyword">const</span> <a class="code" href="structfaiss_1_1gpu_1_1TensorInfo.html">TensorInfo&lt;T, IndexT&gt;</a>&amp; info,</div>
<div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;                                            IndexT linearId) {</div>
<div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;    <span class="keywordflow">return</span> linearId;</div>
<div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;  }</div>
<div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;};</div>
<div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;</div>
<div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keyword">typename</span> IndexT, <span class="keywordtype">int</span> Dim&gt;</div>
<div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;<a class="code" href="structfaiss_1_1gpu_1_1TensorInfo.html">TensorInfo&lt;T, IndexT&gt;</a> getTensorInfo(<span class="keyword">const</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, true&gt;</a>&amp; t) {</div>
<div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;  <a class="code" href="structfaiss_1_1gpu_1_1TensorInfo.html">TensorInfo&lt;T, IndexT&gt;</a> info;</div>
<div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;</div>
<div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim; ++i) {</div>
<div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;    info.sizes[i] = (IndexT) t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(i);</div>
<div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;    info.strides[i] = (IndexT) t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0b8bba630f7a1fa217f90b20d298420a">getStride</a>(i);</div>
<div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;  }</div>
<div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;</div>
<div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;  info.data = t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>();</div>
<div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;  info.dims = Dim;</div>
<div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;</div>
<div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;  <span class="keywordflow">return</span> info;</div>
<div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;}</div>
<div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;</div>
<div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keyword">typename</span> IndexT, <span class="keywordtype">int</span> DimInput, <span class="keywordtype">int</span> DimOutput&gt;</div>
<div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;__global__ <span class="keywordtype">void</span> transposeAny(TensorInfo&lt;T, IndexT&gt; input,</div>
<div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;                             TensorInfo&lt;T, IndexT&gt; output,</div>
<div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;                             IndexT totalSize) {</div>
<div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;  <span class="keywordflow">for</span> (IndexT i = blockIdx.x * blockDim.x + threadIdx.x;</div>
<div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;       i &lt; totalSize;</div>
<div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;       i += gridDim.x + blockDim.x) {</div>
<div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;    <span class="keyword">auto</span> inputOffset = TensorInfoOffset&lt;T, IndexT, DimInput&gt;::get(input, i);</div>
<div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;    <span class="keyword">auto</span> outputOffset = TensorInfoOffset&lt;T, IndexT, DimOutput&gt;::get(output, i);</div>
<div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;</div>
<div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;<span class="preprocessor">#if __CUDA_ARCH__ &gt;= 350</span></div>
<div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;<span class="preprocessor"></span>    output.data[outputOffset] = __ldg(&amp;input.data[inputOffset]);</div>
<div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;<span class="preprocessor">#else</span></div>
<div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;<span class="preprocessor"></span>    output.data[outputOffset] = input.data[inputOffset];</div>
<div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;<span class="preprocessor">#endif</span></div>
<div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;<span class="preprocessor"></span>  }</div>
<div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;}</div>
<div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;<span class="comment">/// Performs an out-of-place transposition between any two dimensions.</span></div>
<div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;<span class="comment">/// Best performance is if the transposed dimensions are not</span></div>
<div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;<span class="comment">/// innermost, since the reads and writes will be coalesced.</span></div>
<div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;<span class="comment">/// Could include a shared memory transposition if the dimensions</span></div>
<div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;<span class="comment">/// being transposed are innermost, but would require support for</span></div>
<div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;<span class="comment">/// arbitrary rectangular matrices.</span></div>
<div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;<span class="comment">/// This linearized implementation seems to perform well enough,</span></div>
<div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;<span class="comment">/// especially for cases that we care about (outer dimension</span></div>
<div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;<span class="comment">/// transpositions).</span></div>
<div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;<span class="comment"></span><span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim&gt;</div>
<div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;<span class="keywordtype">void</span> runTransposeAny(Tensor&lt;T, Dim, true&gt;&amp; in,</div>
<div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;                     <span class="keywordtype">int</span> dim1, <span class="keywordtype">int</span> dim2,</div>
<div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;                     Tensor&lt;T, Dim, true&gt;&amp; out,</div>
<div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;                     cudaStream_t stream) {</div>
<div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;  static_assert(Dim &lt;= TensorInfo&lt;T, unsigned int&gt;::kMaxDims,</div>
<div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;                <span class="stringliteral">&quot;too many dimensions&quot;</span>);</div>
<div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;</div>
<div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;  FAISS_ASSERT(dim1 != dim2);</div>
<div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;  FAISS_ASSERT(dim1 &lt; Dim &amp;&amp; dim2 &lt; Dim);</div>
<div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;</div>
<div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;  <span class="keywordtype">int</span> outSize[Dim];</div>
<div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;</div>
<div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim; ++i) {</div>
<div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;    outSize[i] = in.getSize(i);</div>
<div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;  }</div>
<div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;</div>
<div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;  std::swap(outSize[dim1], outSize[dim2]);</div>
<div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;</div>
<div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim; ++i) {</div>
<div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;    FAISS_ASSERT(out.getSize(i) == outSize[i]);</div>
<div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;  }</div>
<div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;</div>
<div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;  <span class="keywordtype">size_t</span> totalSize = in.numElements();</div>
<div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;  <span class="keywordtype">size_t</span> block = std::min((<span class="keywordtype">size_t</span>) getMaxThreadsCurrentDevice(), totalSize);</div>
<div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;</div>
<div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;  <span class="keywordflow">if</span> (totalSize &lt;= (<span class="keywordtype">size_t</span>) std::numeric_limits&lt;int&gt;::max()) {</div>
<div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;    <span class="comment">// div/mod seems faster with unsigned types</span></div>
<div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;    <span class="keyword">auto</span> inInfo = getTensorInfo&lt;T, unsigned int, Dim&gt;(in);</div>
<div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;    <span class="keyword">auto</span> outInfo = getTensorInfo&lt;T, unsigned int, Dim&gt;(out);</div>
<div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;</div>
<div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;    std::swap(inInfo.sizes[dim1], inInfo.sizes[dim2]);</div>
<div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;    std::swap(inInfo.strides[dim1], inInfo.strides[dim2]);</div>
<div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;</div>
<div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;    <span class="keyword">auto</span> grid = std::min(utils::divUp(totalSize, block), (<span class="keywordtype">size_t</span>) 4096);</div>
<div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;</div>
<div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;    transposeAny&lt;T, <span class="keywordtype">unsigned</span> int, Dim, -1&gt;</div>
<div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;      &lt;&lt;&lt;grid, block, 0, stream&gt;&gt;&gt;(inInfo, outInfo, totalSize);</div>
<div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;  } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;    <span class="keyword">auto</span> inInfo = getTensorInfo&lt;T, unsigned long, Dim&gt;(in);</div>
<div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;    <span class="keyword">auto</span> outInfo = getTensorInfo&lt;T, unsigned long, Dim&gt;(out);</div>
<div class="line"><a name="l00144"></a><span class="lineno">  144</span>&#160;</div>
<div class="line"><a name="l00145"></a><span class="lineno">  145</span>&#160;    std::swap(inInfo.sizes[dim1], inInfo.sizes[dim2]);</div>
<div class="line"><a name="l00146"></a><span class="lineno">  146</span>&#160;    std::swap(inInfo.strides[dim1], inInfo.strides[dim2]);</div>
<div class="line"><a name="l00147"></a><span class="lineno">  147</span>&#160;</div>
<div class="line"><a name="l00148"></a><span class="lineno">  148</span>&#160;    <span class="keyword">auto</span> grid = std::min(utils::divUp(totalSize, block), (<span class="keywordtype">size_t</span>) 4096);</div>
<div class="line"><a name="l00149"></a><span class="lineno">  149</span>&#160;</div>
<div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;    transposeAny&lt;T, <span class="keywordtype">unsigned</span> long, Dim, -1&gt;</div>
<div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;      &lt;&lt;&lt;grid, block, 0, stream&gt;&gt;&gt;(inInfo, outInfo, totalSize);</div>
<div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;  }</div>
<div class="line"><a name="l00153"></a><span class="lineno">  153</span>&#160;  CUDA_TEST_ERROR();</div>
<div class="line"><a name="l00154"></a><span class="lineno">  154</span>&#160;}</div>
<div class="line"><a name="l00155"></a><span class="lineno">  155</span>&#160;</div>
<div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;} } <span class="comment">// namespace</span></div>
<div class="ttc" id="structfaiss_1_1gpu_1_1TensorInfo_html"><div class="ttname"><a href="structfaiss_1_1gpu_1_1TensorInfo.html">faiss::gpu::TensorInfo</a></div><div class="ttdef"><b>Definition:</b> <a href="Transpose_8cuh_source.html#l00022">Transpose.cuh:22</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6699c311648457f257afa340c61f417c"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">faiss::gpu::Tensor::getSize</a></div><div class="ttdeci">__host__ __device__ IndexT getSize(int i) const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00223">Tensor.cuh:223</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a50411ce4d0fa32ef715e3321b6e33212"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">faiss::gpu::Tensor::data</a></div><div class="ttdeci">__host__ __device__ DataPtrType data()</div><div class="ttdoc">Returns a raw pointer to the start of our data. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00175">Tensor.cuh:175</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html">faiss::gpu::Tensor</a></div><div class="ttdoc">Our tensor type. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00029">Tensor.cuh:29</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a0b8bba630f7a1fa217f90b20d298420a"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a0b8bba630f7a1fa217f90b20d298420a">faiss::gpu::Tensor::getStride</a></div><div class="ttdeci">__host__ __device__ IndexT getStride(int i) const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00229">Tensor.cuh:229</a></div></div>
<div class="ttc" id="structfaiss_1_1gpu_1_1TensorInfoOffset_html"><div class="ttname"><a href="structfaiss_1_1gpu_1_1TensorInfoOffset.html">faiss::gpu::TensorInfoOffset</a></div><div class="ttdef"><b>Definition:</b> <a href="Transpose_8cuh_source.html#l00032">Transpose.cuh:32</a></div></div>
</div><!-- fragment --></div><!-- contents -->
<!-- start footer part -->
<hr class="footer"/><address class="footer"><small>
Generated by &#160;<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/>
</a> 1.8.5
</small></address>
</body>
</html>