1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.5"/>
<title>Faiss: /tmp/faiss/gpu/utils/Transpose.cuh Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
$(document).ready(function() { searchBox.OnSelectItem(0); });
</script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr style="height: 56px;">
<td style="padding-left: 0.5em;">
<div id="projectname">Faiss
</div>
</td>
</tr>
</tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.5 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
<div id="navrow1" class="tabs">
<ul class="tablist">
<li><a href="index.html"><span>Main Page</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li class="current"><a href="files.html"><span>Files</span></a></li>
<li>
<div id="MSearchBox" class="MSearchBoxInactive">
<span class="left">
<img id="MSearchSelect" src="search/mag_sel.png"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
alt=""/>
<input type="text" id="MSearchField" value="Search" accesskey="S"
onfocus="searchBox.OnSearchFieldFocus(true)"
onblur="searchBox.OnSearchFieldFocus(false)"
onkeyup="searchBox.OnSearchFieldChange(event)"/>
</span><span class="right">
<a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
</span>
</div>
</li>
</ul>
</div>
<div id="navrow2" class="tabs2">
<ul class="tablist">
<li><a href="files.html"><span>File List</span></a></li>
</ul>
</div>
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
onkeydown="return searchBox.OnSearchSelectKey(event)">
<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark"> </span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark"> </span>Classes</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark"> </span>Namespaces</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark"> </span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark"> </span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark"> </span>Typedefs</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(6)"><span class="SelectionMark"> </span>Enumerations</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(7)"><span class="SelectionMark"> </span>Enumerator</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(8)"><span class="SelectionMark"> </span>Friends</a></div>
<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0"
name="MSearchResults" id="MSearchResults">
</iframe>
</div>
<div id="nav-path" class="navpath">
<ul>
<li class="navelem"><a class="el" href="dir_af0e5773a0d3761542ab6067d117c294.html">gpu</a></li><li class="navelem"><a class="el" href="dir_4b23abee0b4e5d71a28bc7475a9e97e1.html">utils</a></li> </ul>
</div>
</div><!-- top -->
<div class="header">
<div class="headertitle">
<div class="title">Transpose.cuh</div> </div>
</div><!--header-->
<div class="contents">
<div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno"> 1</span> <span class="comment">/**</span></div>
<div class="line"><a name="l00002"></a><span class="lineno"> 2</span> <span class="comment"> * Copyright (c) 2015-present, Facebook, Inc.</span></div>
<div class="line"><a name="l00003"></a><span class="lineno"> 3</span> <span class="comment"> * All rights reserved.</span></div>
<div class="line"><a name="l00004"></a><span class="lineno"> 4</span> <span class="comment"> *</span></div>
<div class="line"><a name="l00005"></a><span class="lineno"> 5</span> <span class="comment"> * This source code is licensed under the BSD+Patents license found in the</span></div>
<div class="line"><a name="l00006"></a><span class="lineno"> 6</span> <span class="comment"> * LICENSE file in the root directory of this source tree.</span></div>
<div class="line"><a name="l00007"></a><span class="lineno"> 7</span> <span class="comment"> */</span></div>
<div class="line"><a name="l00008"></a><span class="lineno"> 8</span> </div>
<div class="line"><a name="l00009"></a><span class="lineno"> 9</span> </div>
<div class="line"><a name="l00010"></a><span class="lineno"> 10</span> <span class="preprocessor">#pragma once</span></div>
<div class="line"><a name="l00011"></a><span class="lineno"> 11</span> <span class="preprocessor"></span></div>
<div class="line"><a name="l00012"></a><span class="lineno"> 12</span> <span class="preprocessor">#include "../../FaissAssert.h"</span></div>
<div class="line"><a name="l00013"></a><span class="lineno"> 13</span> <span class="preprocessor">#include "Tensor.cuh"</span></div>
<div class="line"><a name="l00014"></a><span class="lineno"> 14</span> <span class="preprocessor">#include "DeviceUtils.h"</span></div>
<div class="line"><a name="l00015"></a><span class="lineno"> 15</span> <span class="preprocessor">#include <cuda.h></span></div>
<div class="line"><a name="l00016"></a><span class="lineno"> 16</span> </div>
<div class="line"><a name="l00017"></a><span class="lineno"> 17</span> <span class="preprocessor">#include <stdio.h></span></div>
<div class="line"><a name="l00018"></a><span class="lineno"> 18</span> </div>
<div class="line"><a name="l00019"></a><span class="lineno"> 19</span> <span class="keyword">namespace </span>faiss { <span class="keyword">namespace </span>gpu {</div>
<div class="line"><a name="l00020"></a><span class="lineno"> 20</span> </div>
<div class="line"><a name="l00021"></a><span class="lineno"> 21</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keyword">typename</span> IndexT></div>
<div class="line"><a name="l00022"></a><span class="lineno"><a class="line" href="structfaiss_1_1gpu_1_1TensorInfo.html"> 22</a></span> <span class="keyword">struct </span><a class="code" href="structfaiss_1_1gpu_1_1TensorInfo.html">TensorInfo</a> {</div>
<div class="line"><a name="l00023"></a><span class="lineno"> 23</span>  <span class="keyword">static</span> constexpr <span class="keywordtype">int</span> kMaxDims = 8;</div>
<div class="line"><a name="l00024"></a><span class="lineno"> 24</span> </div>
<div class="line"><a name="l00025"></a><span class="lineno"> 25</span>  T* data;</div>
<div class="line"><a name="l00026"></a><span class="lineno"> 26</span>  IndexT sizes[kMaxDims];</div>
<div class="line"><a name="l00027"></a><span class="lineno"> 27</span>  IndexT strides[kMaxDims];</div>
<div class="line"><a name="l00028"></a><span class="lineno"> 28</span>  <span class="keywordtype">int</span> dims;</div>
<div class="line"><a name="l00029"></a><span class="lineno"> 29</span> };</div>
<div class="line"><a name="l00030"></a><span class="lineno"> 30</span> </div>
<div class="line"><a name="l00031"></a><span class="lineno"> 31</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keyword">typename</span> IndexT, <span class="keywordtype">int</span> Dim></div>
<div class="line"><a name="l00032"></a><span class="lineno"><a class="line" href="structfaiss_1_1gpu_1_1TensorInfoOffset.html"> 32</a></span> <span class="keyword">struct </span><a class="code" href="structfaiss_1_1gpu_1_1TensorInfoOffset.html">TensorInfoOffset</a> {</div>
<div class="line"><a name="l00033"></a><span class="lineno"> 33</span>  __device__ <span class="keyword">inline</span> <span class="keyword">static</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <span class="keyword">get</span>(<span class="keyword">const</span> <a class="code" href="structfaiss_1_1gpu_1_1TensorInfo.html">TensorInfo<T, IndexT></a>& info,</div>
<div class="line"><a name="l00034"></a><span class="lineno"> 34</span>  IndexT linearId) {</div>
<div class="line"><a name="l00035"></a><span class="lineno"> 35</span>  IndexT offset = 0;</div>
<div class="line"><a name="l00036"></a><span class="lineno"> 36</span> </div>
<div class="line"><a name="l00037"></a><span class="lineno"> 37</span> <span class="preprocessor">#pragma unroll</span></div>
<div class="line"><a name="l00038"></a><span class="lineno"> 38</span> <span class="preprocessor"></span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = Dim - 1; i >= 0; --i) {</div>
<div class="line"><a name="l00039"></a><span class="lineno"> 39</span>  IndexT curDimIndex = linearId % info.sizes[i];</div>
<div class="line"><a name="l00040"></a><span class="lineno"> 40</span>  IndexT curDimOffset = curDimIndex * info.strides[i];</div>
<div class="line"><a name="l00041"></a><span class="lineno"> 41</span> </div>
<div class="line"><a name="l00042"></a><span class="lineno"> 42</span>  offset += curDimOffset;</div>
<div class="line"><a name="l00043"></a><span class="lineno"> 43</span> </div>
<div class="line"><a name="l00044"></a><span class="lineno"> 44</span>  <span class="keywordflow">if</span> (i > 0) {</div>
<div class="line"><a name="l00045"></a><span class="lineno"> 45</span>  linearId /= info.sizes[i];</div>
<div class="line"><a name="l00046"></a><span class="lineno"> 46</span>  }</div>
<div class="line"><a name="l00047"></a><span class="lineno"> 47</span>  }</div>
<div class="line"><a name="l00048"></a><span class="lineno"> 48</span> </div>
<div class="line"><a name="l00049"></a><span class="lineno"> 49</span>  <span class="keywordflow">return</span> offset;</div>
<div class="line"><a name="l00050"></a><span class="lineno"> 50</span>  }</div>
<div class="line"><a name="l00051"></a><span class="lineno"> 51</span> };</div>
<div class="line"><a name="l00052"></a><span class="lineno"> 52</span> </div>
<div class="line"><a name="l00053"></a><span class="lineno"> 53</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keyword">typename</span> IndexT></div>
<div class="line"><a name="l00054"></a><span class="lineno"><a class="line" href="structfaiss_1_1gpu_1_1TensorInfoOffset_3_01T_00_01IndexT_00-1_01_4.html"> 54</a></span> <span class="keyword">struct </span><a class="code" href="structfaiss_1_1gpu_1_1TensorInfoOffset.html">TensorInfoOffset</a><T, IndexT, -1> {</div>
<div class="line"><a name="l00055"></a><span class="lineno"> 55</span>  __device__ <span class="keyword">inline</span> <span class="keyword">static</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <span class="keyword">get</span>(<span class="keyword">const</span> <a class="code" href="structfaiss_1_1gpu_1_1TensorInfo.html">TensorInfo<T, IndexT></a>& info,</div>
<div class="line"><a name="l00056"></a><span class="lineno"> 56</span>  IndexT linearId) {</div>
<div class="line"><a name="l00057"></a><span class="lineno"> 57</span>  <span class="keywordflow">return</span> linearId;</div>
<div class="line"><a name="l00058"></a><span class="lineno"> 58</span>  }</div>
<div class="line"><a name="l00059"></a><span class="lineno"> 59</span> };</div>
<div class="line"><a name="l00060"></a><span class="lineno"> 60</span> </div>
<div class="line"><a name="l00061"></a><span class="lineno"> 61</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keyword">typename</span> IndexT, <span class="keywordtype">int</span> Dim></div>
<div class="line"><a name="l00062"></a><span class="lineno"> 62</span> <a class="code" href="structfaiss_1_1gpu_1_1TensorInfo.html">TensorInfo<T, IndexT></a> getTensorInfo(<span class="keyword">const</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, true></a>& t) {</div>
<div class="line"><a name="l00063"></a><span class="lineno"> 63</span>  <a class="code" href="structfaiss_1_1gpu_1_1TensorInfo.html">TensorInfo<T, IndexT></a> info;</div>
<div class="line"><a name="l00064"></a><span class="lineno"> 64</span> </div>
<div class="line"><a name="l00065"></a><span class="lineno"> 65</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
<div class="line"><a name="l00066"></a><span class="lineno"> 66</span>  info.sizes[i] = (IndexT) t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(i);</div>
<div class="line"><a name="l00067"></a><span class="lineno"> 67</span>  info.strides[i] = (IndexT) t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0b8bba630f7a1fa217f90b20d298420a">getStride</a>(i);</div>
<div class="line"><a name="l00068"></a><span class="lineno"> 68</span>  }</div>
<div class="line"><a name="l00069"></a><span class="lineno"> 69</span> </div>
<div class="line"><a name="l00070"></a><span class="lineno"> 70</span>  info.data = t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>();</div>
<div class="line"><a name="l00071"></a><span class="lineno"> 71</span>  info.dims = Dim;</div>
<div class="line"><a name="l00072"></a><span class="lineno"> 72</span> </div>
<div class="line"><a name="l00073"></a><span class="lineno"> 73</span>  <span class="keywordflow">return</span> info;</div>
<div class="line"><a name="l00074"></a><span class="lineno"> 74</span> }</div>
<div class="line"><a name="l00075"></a><span class="lineno"> 75</span> </div>
<div class="line"><a name="l00076"></a><span class="lineno"> 76</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keyword">typename</span> IndexT, <span class="keywordtype">int</span> DimInput, <span class="keywordtype">int</span> DimOutput></div>
<div class="line"><a name="l00077"></a><span class="lineno"> 77</span> __global__ <span class="keywordtype">void</span> transposeAny(TensorInfo<T, IndexT> input,</div>
<div class="line"><a name="l00078"></a><span class="lineno"> 78</span>  TensorInfo<T, IndexT> output,</div>
<div class="line"><a name="l00079"></a><span class="lineno"> 79</span>  IndexT totalSize) {</div>
<div class="line"><a name="l00080"></a><span class="lineno"> 80</span>  <span class="keywordflow">for</span> (IndexT i = blockIdx.x * blockDim.x + threadIdx.x;</div>
<div class="line"><a name="l00081"></a><span class="lineno"> 81</span>  i < totalSize;</div>
<div class="line"><a name="l00082"></a><span class="lineno"> 82</span>  i += gridDim.x + blockDim.x) {</div>
<div class="line"><a name="l00083"></a><span class="lineno"> 83</span>  <span class="keyword">auto</span> inputOffset = TensorInfoOffset<T, IndexT, DimInput>::get(input, i);</div>
<div class="line"><a name="l00084"></a><span class="lineno"> 84</span>  <span class="keyword">auto</span> outputOffset = TensorInfoOffset<T, IndexT, DimOutput>::get(output, i);</div>
<div class="line"><a name="l00085"></a><span class="lineno"> 85</span> </div>
<div class="line"><a name="l00086"></a><span class="lineno"> 86</span> <span class="preprocessor">#if __CUDA_ARCH__ >= 350</span></div>
<div class="line"><a name="l00087"></a><span class="lineno"> 87</span> <span class="preprocessor"></span> output.data[outputOffset] = __ldg(&input.data[inputOffset]);</div>
<div class="line"><a name="l00088"></a><span class="lineno"> 88</span> <span class="preprocessor">#else</span></div>
<div class="line"><a name="l00089"></a><span class="lineno"> 89</span> <span class="preprocessor"></span> output.data[outputOffset] = input.data[inputOffset];</div>
<div class="line"><a name="l00090"></a><span class="lineno"> 90</span> <span class="preprocessor">#endif</span></div>
<div class="line"><a name="l00091"></a><span class="lineno"> 91</span> <span class="preprocessor"></span> }</div>
<div class="line"><a name="l00092"></a><span class="lineno"> 92</span> }</div>
<div class="line"><a name="l00093"></a><span class="lineno"> 93</span> <span class="comment"></span></div>
<div class="line"><a name="l00094"></a><span class="lineno"> 94</span> <span class="comment">/// Performs an out-of-place transposition between any two dimensions.</span></div>
<div class="line"><a name="l00095"></a><span class="lineno"> 95</span> <span class="comment">/// Best performance is if the transposed dimensions are not</span></div>
<div class="line"><a name="l00096"></a><span class="lineno"> 96</span> <span class="comment">/// innermost, since the reads and writes will be coalesced.</span></div>
<div class="line"><a name="l00097"></a><span class="lineno"> 97</span> <span class="comment">/// Could include a shared memory transposition if the dimensions</span></div>
<div class="line"><a name="l00098"></a><span class="lineno"> 98</span> <span class="comment">/// being transposed are innermost, but would require support for</span></div>
<div class="line"><a name="l00099"></a><span class="lineno"> 99</span> <span class="comment">/// arbitrary rectangular matrices.</span></div>
<div class="line"><a name="l00100"></a><span class="lineno"> 100</span> <span class="comment">/// This linearized implementation seems to perform well enough,</span></div>
<div class="line"><a name="l00101"></a><span class="lineno"> 101</span> <span class="comment">/// especially for cases that we care about (outer dimension</span></div>
<div class="line"><a name="l00102"></a><span class="lineno"> 102</span> <span class="comment">/// transpositions).</span></div>
<div class="line"><a name="l00103"></a><span class="lineno"> 103</span> <span class="comment"></span><span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim></div>
<div class="line"><a name="l00104"></a><span class="lineno"> 104</span> <span class="keywordtype">void</span> runTransposeAny(Tensor<T, Dim, true>& in,</div>
<div class="line"><a name="l00105"></a><span class="lineno"> 105</span>  <span class="keywordtype">int</span> dim1, <span class="keywordtype">int</span> dim2,</div>
<div class="line"><a name="l00106"></a><span class="lineno"> 106</span>  Tensor<T, Dim, true>& out,</div>
<div class="line"><a name="l00107"></a><span class="lineno"> 107</span>  cudaStream_t stream) {</div>
<div class="line"><a name="l00108"></a><span class="lineno"> 108</span>  static_assert(Dim <= TensorInfo<T, unsigned int>::kMaxDims,</div>
<div class="line"><a name="l00109"></a><span class="lineno"> 109</span>  <span class="stringliteral">"too many dimensions"</span>);</div>
<div class="line"><a name="l00110"></a><span class="lineno"> 110</span> </div>
<div class="line"><a name="l00111"></a><span class="lineno"> 111</span>  FAISS_ASSERT(dim1 != dim2);</div>
<div class="line"><a name="l00112"></a><span class="lineno"> 112</span>  FAISS_ASSERT(dim1 < Dim && dim2 < Dim);</div>
<div class="line"><a name="l00113"></a><span class="lineno"> 113</span> </div>
<div class="line"><a name="l00114"></a><span class="lineno"> 114</span>  <span class="keywordtype">int</span> outSize[Dim];</div>
<div class="line"><a name="l00115"></a><span class="lineno"> 115</span> </div>
<div class="line"><a name="l00116"></a><span class="lineno"> 116</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
<div class="line"><a name="l00117"></a><span class="lineno"> 117</span>  outSize[i] = in.getSize(i);</div>
<div class="line"><a name="l00118"></a><span class="lineno"> 118</span>  }</div>
<div class="line"><a name="l00119"></a><span class="lineno"> 119</span> </div>
<div class="line"><a name="l00120"></a><span class="lineno"> 120</span>  std::swap(outSize[dim1], outSize[dim2]);</div>
<div class="line"><a name="l00121"></a><span class="lineno"> 121</span> </div>
<div class="line"><a name="l00122"></a><span class="lineno"> 122</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
<div class="line"><a name="l00123"></a><span class="lineno"> 123</span>  FAISS_ASSERT(out.getSize(i) == outSize[i]);</div>
<div class="line"><a name="l00124"></a><span class="lineno"> 124</span>  }</div>
<div class="line"><a name="l00125"></a><span class="lineno"> 125</span> </div>
<div class="line"><a name="l00126"></a><span class="lineno"> 126</span>  <span class="keywordtype">size_t</span> totalSize = in.numElements();</div>
<div class="line"><a name="l00127"></a><span class="lineno"> 127</span>  <span class="keywordtype">size_t</span> block = std::min((<span class="keywordtype">size_t</span>) getMaxThreadsCurrentDevice(), totalSize);</div>
<div class="line"><a name="l00128"></a><span class="lineno"> 128</span> </div>
<div class="line"><a name="l00129"></a><span class="lineno"> 129</span>  <span class="keywordflow">if</span> (totalSize <= (<span class="keywordtype">size_t</span>) std::numeric_limits<int>::max()) {</div>
<div class="line"><a name="l00130"></a><span class="lineno"> 130</span>  <span class="comment">// div/mod seems faster with unsigned types</span></div>
<div class="line"><a name="l00131"></a><span class="lineno"> 131</span>  <span class="keyword">auto</span> inInfo = getTensorInfo<T, unsigned int, Dim>(in);</div>
<div class="line"><a name="l00132"></a><span class="lineno"> 132</span>  <span class="keyword">auto</span> outInfo = getTensorInfo<T, unsigned int, Dim>(out);</div>
<div class="line"><a name="l00133"></a><span class="lineno"> 133</span> </div>
<div class="line"><a name="l00134"></a><span class="lineno"> 134</span>  std::swap(inInfo.sizes[dim1], inInfo.sizes[dim2]);</div>
<div class="line"><a name="l00135"></a><span class="lineno"> 135</span>  std::swap(inInfo.strides[dim1], inInfo.strides[dim2]);</div>
<div class="line"><a name="l00136"></a><span class="lineno"> 136</span> </div>
<div class="line"><a name="l00137"></a><span class="lineno"> 137</span>  <span class="keyword">auto</span> grid = std::min(utils::divUp(totalSize, block), (<span class="keywordtype">size_t</span>) 4096);</div>
<div class="line"><a name="l00138"></a><span class="lineno"> 138</span> </div>
<div class="line"><a name="l00139"></a><span class="lineno"> 139</span>  transposeAny<T, <span class="keywordtype">unsigned</span> int, Dim, -1></div>
<div class="line"><a name="l00140"></a><span class="lineno"> 140</span>  <<<grid, block, 0, stream>>>(inInfo, outInfo, totalSize);</div>
<div class="line"><a name="l00141"></a><span class="lineno"> 141</span>  } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00142"></a><span class="lineno"> 142</span>  <span class="keyword">auto</span> inInfo = getTensorInfo<T, unsigned long, Dim>(in);</div>
<div class="line"><a name="l00143"></a><span class="lineno"> 143</span>  <span class="keyword">auto</span> outInfo = getTensorInfo<T, unsigned long, Dim>(out);</div>
<div class="line"><a name="l00144"></a><span class="lineno"> 144</span> </div>
<div class="line"><a name="l00145"></a><span class="lineno"> 145</span>  std::swap(inInfo.sizes[dim1], inInfo.sizes[dim2]);</div>
<div class="line"><a name="l00146"></a><span class="lineno"> 146</span>  std::swap(inInfo.strides[dim1], inInfo.strides[dim2]);</div>
<div class="line"><a name="l00147"></a><span class="lineno"> 147</span> </div>
<div class="line"><a name="l00148"></a><span class="lineno"> 148</span>  <span class="keyword">auto</span> grid = std::min(utils::divUp(totalSize, block), (<span class="keywordtype">size_t</span>) 4096);</div>
<div class="line"><a name="l00149"></a><span class="lineno"> 149</span> </div>
<div class="line"><a name="l00150"></a><span class="lineno"> 150</span>  transposeAny<T, <span class="keywordtype">unsigned</span> long, Dim, -1></div>
<div class="line"><a name="l00151"></a><span class="lineno"> 151</span>  <<<grid, block, 0, stream>>>(inInfo, outInfo, totalSize);</div>
<div class="line"><a name="l00152"></a><span class="lineno"> 152</span>  }</div>
<div class="line"><a name="l00153"></a><span class="lineno"> 153</span>  CUDA_TEST_ERROR();</div>
<div class="line"><a name="l00154"></a><span class="lineno"> 154</span> }</div>
<div class="line"><a name="l00155"></a><span class="lineno"> 155</span> </div>
<div class="line"><a name="l00156"></a><span class="lineno"> 156</span> } } <span class="comment">// namespace</span></div>
<div class="ttc" id="structfaiss_1_1gpu_1_1TensorInfo_html"><div class="ttname"><a href="structfaiss_1_1gpu_1_1TensorInfo.html">faiss::gpu::TensorInfo</a></div><div class="ttdef"><b>Definition:</b> <a href="Transpose_8cuh_source.html#l00022">Transpose.cuh:22</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6699c311648457f257afa340c61f417c"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">faiss::gpu::Tensor::getSize</a></div><div class="ttdeci">__host__ __device__ IndexT getSize(int i) const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00223">Tensor.cuh:223</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a50411ce4d0fa32ef715e3321b6e33212"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">faiss::gpu::Tensor::data</a></div><div class="ttdeci">__host__ __device__ DataPtrType data()</div><div class="ttdoc">Returns a raw pointer to the start of our data. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00175">Tensor.cuh:175</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html">faiss::gpu::Tensor</a></div><div class="ttdoc">Our tensor type. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00029">Tensor.cuh:29</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a0b8bba630f7a1fa217f90b20d298420a"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a0b8bba630f7a1fa217f90b20d298420a">faiss::gpu::Tensor::getStride</a></div><div class="ttdeci">__host__ __device__ IndexT getStride(int i) const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00229">Tensor.cuh:229</a></div></div>
<div class="ttc" id="structfaiss_1_1gpu_1_1TensorInfoOffset_html"><div class="ttname"><a href="structfaiss_1_1gpu_1_1TensorInfoOffset.html">faiss::gpu::TensorInfoOffset</a></div><div class="ttdef"><b>Definition:</b> <a href="Transpose_8cuh_source.html#l00032">Transpose.cuh:32</a></div></div>
</div><!-- fragment --></div><!-- contents -->
<!-- start footer part -->
<hr class="footer"/><address class="footer"><small>
Generated by  <a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/>
</a> 1.8.5
</small></address>
</body>
</html>