1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD+Patents license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include "IndexScalarQuantizer.h"
#include <cstdio>
#include <algorithm>
#include <omp.h>
#ifdef __SSE__
#include <immintrin.h>
#endif
#include "utils.h"
#include "FaissAssert.h"
#include "AuxIndexStructures.h"
namespace faiss {
/*******************************************************************
* ScalarQuantizer implementation
*
* The main source of complexity is to support combinations of 4
* variants without incurring runtime tests or virtual function calls:
*
* - 4 / 8 bits per code component
* - uniform / non-uniform
* - IP / L2 distance search
* - scalar / AVX distance computation
*
* The appropriate Quantizer object is returned via select_quantizer
* that hides the template mess.
********************************************************************/
#ifdef __AVX__
#define USE_AVX
#endif
struct SQDistanceComputer: DistanceComputer {
const float *q;
const uint8_t *codes;
size_t code_size;
SQDistanceComputer (): q(nullptr), codes (nullptr), code_size (0)
{}
};
namespace {
typedef Index::idx_t idx_t;
typedef ScalarQuantizer::QuantizerType QuantizerType;
typedef ScalarQuantizer::RangeStat RangeStat;
/*******************************************************************
* Codec: converts between values in [0, 1] and an index in a code
* array. The "i" parameter is the vector component index (not byte
* index).
*/
struct Codec8bit {
static void encode_component (float x, uint8_t *code, int i) {
code[i] = (int)(255 * x);
}
static float decode_component (const uint8_t *code, int i) {
return (code[i] + 0.5f) / 255.0f;
}
#ifdef USE_AVX
static __m256 decode_8_components (const uint8_t *code, int i) {
uint64_t c8 = *(uint64_t*)(code + i);
__m128i c4lo = _mm_cvtepu8_epi32 (_mm_set1_epi32(c8));
__m128i c4hi = _mm_cvtepu8_epi32 (_mm_set1_epi32(c8 >> 32));
// __m256i i8 = _mm256_set_m128i(c4lo, c4hi);
__m256i i8 = _mm256_castsi128_si256 (c4lo);
i8 = _mm256_insertf128_si256 (i8, c4hi, 1);
__m256 f8 = _mm256_cvtepi32_ps (i8);
__m256 half = _mm256_set1_ps (0.5f);
f8 += half;
__m256 one_255 = _mm256_set1_ps (1.f / 255.f);
return f8 * one_255;
}
#endif
};
struct Codec4bit {
static void encode_component (float x, uint8_t *code, int i) {
code [i / 2] |= (int)(x * 15.0) << ((i & 1) << 2);
}
static float decode_component (const uint8_t *code, int i) {
return (((code[i / 2] >> ((i & 1) << 2)) & 0xf) + 0.5f) / 15.0f;
}
#ifdef USE_AVX
static __m256 decode_8_components (const uint8_t *code, int i) {
uint32_t c4 = *(uint32_t*)(code + (i >> 1));
uint32_t mask = 0x0f0f0f0f;
uint32_t c4ev = c4 & mask;
uint32_t c4od = (c4 >> 4) & mask;
// the 8 lower bytes of c8 contain the values
__m128i c8 = _mm_unpacklo_epi8 (_mm_set1_epi32(c4ev),
_mm_set1_epi32(c4od));
__m128i c4lo = _mm_cvtepu8_epi32 (c8);
__m128i c4hi = _mm_cvtepu8_epi32 (_mm_srli_si128(c8, 4));
__m256i i8 = _mm256_castsi128_si256 (c4lo);
i8 = _mm256_insertf128_si256 (i8, c4hi, 1);
__m256 f8 = _mm256_cvtepi32_ps (i8);
__m256 half = _mm256_set1_ps (0.5f);
f8 += half;
__m256 one_255 = _mm256_set1_ps (1.f / 15.f);
return f8 * one_255;
}
#endif
};
#ifdef USE_AVX
uint16_t encode_fp16 (float x) {
__m128 xf = _mm_set1_ps (x);
__m128i xi = _mm_cvtps_ph (
xf, _MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC);
return _mm_cvtsi128_si32 (xi) & 0xffff;
}
float decode_fp16 (uint16_t x) {
__m128i xi = _mm_set1_epi16 (x);
__m128 xf = _mm_cvtph_ps (xi);
return _mm_cvtss_f32 (xf);
}
#else
// non-intrinsic FP16 <-> FP32 code adapted from
// https://github.com/ispc/ispc/blob/master/stdlib.ispc
float floatbits (uint32_t x) {
void *xptr = &x;
return *(float*)xptr;
}
uint32_t intbits (float f) {
void *fptr = &f;
return *(uint32_t*)fptr;
}
uint16_t encode_fp16 (float f) {
// via Fabian "ryg" Giesen.
// https://gist.github.com/2156668
uint32_t sign_mask = 0x80000000u;
int32_t o;
uint32_t fint = intbits(f);
uint32_t sign = fint & sign_mask;
fint ^= sign;
// NOTE all the integer compares in this function can be safely
// compiled into signed compares since all operands are below
// 0x80000000. Important if you want fast straight SSE2 code (since
// there's no unsigned PCMPGTD).
// Inf or NaN (all exponent bits set)
// NaN->qNaN and Inf->Inf
// unconditional assignment here, will override with right value for
// the regular case below.
uint32_t f32infty = 255u << 23;
o = (fint > f32infty) ? 0x7e00u : 0x7c00u;
// (De)normalized number or zero
// update fint unconditionally to save the blending; we don't need it
// anymore for the Inf/NaN case anyway.
const uint32_t round_mask = ~0xfffu;
const uint32_t magic = 15u << 23;
// Shift exponent down, denormalize if necessary.
// NOTE This represents half-float denormals using single
// precision denormals. The main reason to do this is that
// there's no shift with per-lane variable shifts in SSE*, which
// we'd otherwise need. It has some funky side effects though:
// - This conversion will actually respect the FTZ (Flush To Zero)
// flag in MXCSR - if it's set, no half-float denormals will be
// generated. I'm honestly not sure whether this is good or
// bad. It's definitely interesting.
// - If the underlying HW doesn't support denormals (not an issue
// with Intel CPUs, but might be a problem on GPUs or PS3 SPUs),
// you will always get flush-to-zero behavior. This is bad,
// unless you're on a CPU where you don't care.
// - Denormals tend to be slow. FP32 denormals are rare in
// practice outside of things like recursive filters in DSP -
// not a typical half-float application. Whether FP16 denormals
// are rare in practice, I don't know. Whatever slow path your
// HW may or may not have for denormals, this may well hit it.
float fscale = floatbits(fint & round_mask) * floatbits(magic);
fscale = std::min(fscale, floatbits((31u << 23) - 0x1000u));
int32_t fint2 = intbits(fscale) - round_mask;
if (fint < f32infty)
o = fint2 >> 13; // Take the bits!
return (o | (sign >> 16));
}
float decode_fp16 (uint16_t h) {
// https://gist.github.com/2144712
// Fabian "ryg" Giesen.
const uint32_t shifted_exp = 0x7c00u << 13; // exponent mask after shift
int32_t o = ((int32_t)(h & 0x7fffu)) << 13; // exponent/mantissa bits
int32_t exp = shifted_exp & o; // just the exponent
o += (int32_t)(127 - 15) << 23; // exponent adjust
int32_t infnan_val = o + ((int32_t)(128 - 16) << 23);
int32_t zerodenorm_val = intbits(
floatbits(o + (1u<<23)) - floatbits(113u << 23));
int32_t reg_val = (exp == 0) ? zerodenorm_val : o;
int32_t sign_bit = ((int32_t)(h & 0x8000u)) << 16;
return floatbits(((exp == shifted_exp) ? infnan_val : reg_val) | sign_bit);
}
#endif
/*******************************************************************
* Quantizer: normalizes scalar vector components, then passes them
* through a codec
*******************************************************************/
struct Quantizer {
// encodes one vector. Assumes code is filled with 0s on input!
virtual void encode_vector(const float *x, uint8_t *code) const = 0;
virtual void decode_vector(const uint8_t *code, float *x) const = 0;
virtual ~Quantizer() {}
};
template<class Codec, bool uniform, int SIMD>
struct QuantizerTemplate {};
template<class Codec>
struct QuantizerTemplate<Codec, true, 1>: Quantizer {
const size_t d;
const float vmin, vdiff;
QuantizerTemplate(size_t d, const std::vector<float> &trained):
d(d), vmin(trained[0]), vdiff(trained[1])
{
}
void encode_vector(const float* x, uint8_t* code) const final {
for (size_t i = 0; i < d; i++) {
float xi = (x[i] - vmin) / vdiff;
if (xi < 0) {
xi = 0;
}
if (xi > 1.0) {
xi = 1.0;
}
Codec::encode_component(xi, code, i);
}
}
void decode_vector(const uint8_t* code, float* x) const final {
for (size_t i = 0; i < d; i++) {
float xi = Codec::decode_component(code, i);
x[i] = vmin + xi * vdiff;
}
}
float reconstruct_component (const uint8_t * code, int i) const
{
float xi = Codec::decode_component (code, i);
return vmin + xi * vdiff;
}
};
#ifdef USE_AVX
template<class Codec>
struct QuantizerTemplate<Codec, true, 8>: QuantizerTemplate<Codec, true, 1> {
QuantizerTemplate (size_t d, const std::vector<float> &trained):
QuantizerTemplate<Codec, true, 1> (d, trained) {}
__m256 reconstruct_8_components (const uint8_t * code, int i) const
{
__m256 xi = Codec::decode_8_components (code, i);
return _mm256_set1_ps(this->vmin) + xi * _mm256_set1_ps (this->vdiff);
}
};
#endif
template<class Codec>
struct QuantizerTemplate<Codec, false, 1>: Quantizer {
const size_t d;
const float *vmin, *vdiff;
QuantizerTemplate (size_t d, const std::vector<float> &trained):
d(d), vmin(trained.data()), vdiff(trained.data() + d) {}
void encode_vector(const float* x, uint8_t* code) const final {
for (size_t i = 0; i < d; i++) {
float xi = (x[i] - vmin[i]) / vdiff[i];
if (xi < 0)
xi = 0;
if (xi > 1.0)
xi = 1.0;
Codec::encode_component(xi, code, i);
}
}
void decode_vector(const uint8_t* code, float* x) const final {
for (size_t i = 0; i < d; i++) {
float xi = Codec::decode_component(code, i);
x[i] = vmin[i] + xi * vdiff[i];
}
}
float reconstruct_component (const uint8_t * code, int i) const
{
float xi = Codec::decode_component (code, i);
return vmin[i] + xi * vdiff[i];
}
};
#ifdef USE_AVX
template<class Codec>
struct QuantizerTemplate<Codec, false, 8>: QuantizerTemplate<Codec, false, 1> {
QuantizerTemplate (size_t d, const std::vector<float> &trained):
QuantizerTemplate<Codec, false, 1> (d, trained) {}
__m256 reconstruct_8_components (const uint8_t * code, int i) const
{
__m256 xi = Codec::decode_8_components (code, i);
return _mm256_loadu_ps (this->vmin + i) + xi * _mm256_loadu_ps (this->vdiff + i);
}
};
#endif
/*******************************************************************
* FP16 quantizer
*******************************************************************/
template<int SIMDWIDTH>
struct QuantizerFP16 {};
template<>
struct QuantizerFP16<1>: Quantizer {
const size_t d;
QuantizerFP16(size_t d, const std::vector<float> & /* unused */):
d(d) {}
void encode_vector(const float* x, uint8_t* code) const final {
for (size_t i = 0; i < d; i++) {
((uint16_t*)code)[i] = encode_fp16(x[i]);
}
}
void decode_vector(const uint8_t* code, float* x) const final {
for (size_t i = 0; i < d; i++) {
x[i] = decode_fp16(((uint16_t*)code)[i]);
}
}
float reconstruct_component (const uint8_t * code, int i) const
{
return decode_fp16(((uint16_t*)code)[i]);
}
};
#ifdef USE_AVX
template<>
struct QuantizerFP16<8>: QuantizerFP16<1> {
QuantizerFP16 (size_t d, const std::vector<float> &trained):
QuantizerFP16<1> (d, trained) {}
__m256 reconstruct_8_components (const uint8_t * code, int i) const
{
__m128i codei = _mm_loadu_si128 ((const __m128i*)(code + 2 * i));
return _mm256_cvtph_ps (codei);
}
};
#endif
/*******************************************************************
* 8bit_direct quantizer
*******************************************************************/
template<int SIMDWIDTH>
struct Quantizer8bitDirect {};
template<>
struct Quantizer8bitDirect<1>: Quantizer {
const size_t d;
Quantizer8bitDirect(size_t d, const std::vector<float> & /* unused */):
d(d) {}
void encode_vector(const float* x, uint8_t* code) const final {
for (size_t i = 0; i < d; i++) {
code[i] = (uint8_t)x[i];
}
}
void decode_vector(const uint8_t* code, float* x) const final {
for (size_t i = 0; i < d; i++) {
x[i] = code[i];
}
}
float reconstruct_component (const uint8_t * code, int i) const
{
return code[i];
}
};
#ifdef USE_AVX
template<>
struct Quantizer8bitDirect<8>: Quantizer8bitDirect<1> {
Quantizer8bitDirect (size_t d, const std::vector<float> &trained):
Quantizer8bitDirect<1> (d, trained) {}
__m256 reconstruct_8_components (const uint8_t * code, int i) const
{
__m128i x8 = _mm_loadl_epi64((__m128i*)(code + i)); // 8 * int8
__m256i y8 = _mm256_cvtepu8_epi32 (x8); // 8 * int32
return _mm256_cvtepi32_ps (y8); // 8 * float32
}
};
#endif
template<int SIMDWIDTH>
Quantizer *select_quantizer (
QuantizerType qtype,
size_t d, const std::vector<float> & trained)
{
switch(qtype) {
case ScalarQuantizer::QT_8bit:
return new QuantizerTemplate<Codec8bit, false, SIMDWIDTH>(d, trained);
case ScalarQuantizer::QT_4bit:
return new QuantizerTemplate<Codec4bit, false, SIMDWIDTH>(d, trained);
case ScalarQuantizer::QT_8bit_uniform:
return new QuantizerTemplate<Codec8bit, true, SIMDWIDTH>(d, trained);
case ScalarQuantizer::QT_4bit_uniform:
return new QuantizerTemplate<Codec4bit, true, SIMDWIDTH>(d, trained);
case ScalarQuantizer::QT_fp16:
return new QuantizerFP16<SIMDWIDTH> (d, trained);
case ScalarQuantizer::QT_8bit_direct:
return new Quantizer8bitDirect<SIMDWIDTH> (d, trained);
}
FAISS_THROW_MSG ("unknown qtype");
}
Quantizer *select_quantizer (const ScalarQuantizer &sq)
{
#ifdef USE_AVX
if (sq.d % 8 == 0) {
return select_quantizer<8> (sq.qtype, sq.d, sq.trained);
} else
#endif
{
return select_quantizer<1> (sq.qtype, sq.d, sq.trained);
}
}
/*******************************************************************
* Quantizer range training
*/
static float sqr (float x) {
return x * x;
}
void train_Uniform(RangeStat rs, float rs_arg,
idx_t n, int k, const float *x,
std::vector<float> & trained)
{
trained.resize (2);
float & vmin = trained[0];
float & vmax = trained[1];
if (rs == ScalarQuantizer::RS_minmax) {
vmin = HUGE_VAL; vmax = -HUGE_VAL;
for (size_t i = 0; i < n; i++) {
if (x[i] < vmin) vmin = x[i];
if (x[i] > vmax) vmax = x[i];
}
float vexp = (vmax - vmin) * rs_arg;
vmin -= vexp;
vmax += vexp;
} else if (rs == ScalarQuantizer::RS_meanstd) {
double sum = 0, sum2 = 0;
for (size_t i = 0; i < n; i++) {
sum += x[i];
sum2 += x[i] * x[i];
}
float mean = sum / n;
float var = sum2 / n - mean * mean;
float std = var <= 0 ? 1.0 : sqrt(var);
vmin = mean - std * rs_arg ;
vmax = mean + std * rs_arg ;
} else if (rs == ScalarQuantizer::RS_quantiles) {
std::vector<float> x_copy(n);
memcpy(x_copy.data(), x, n * sizeof(*x));
// TODO just do a qucikselect
std::sort(x_copy.begin(), x_copy.end());
int o = int(rs_arg * n);
if (o < 0) o = 0;
if (o > n - o) o = n / 2;
vmin = x_copy[o];
vmax = x_copy[n - 1 - o];
} else if (rs == ScalarQuantizer::RS_optim) {
float a, b;
float sx = 0;
{
vmin = HUGE_VAL, vmax = -HUGE_VAL;
for (size_t i = 0; i < n; i++) {
if (x[i] < vmin) vmin = x[i];
if (x[i] > vmax) vmax = x[i];
sx += x[i];
}
b = vmin;
a = (vmax - vmin) / (k - 1);
}
int verbose = false;
int niter = 2000;
float last_err = -1;
int iter_last_err = 0;
for (int it = 0; it < niter; it++) {
float sn = 0, sn2 = 0, sxn = 0, err1 = 0;
for (idx_t i = 0; i < n; i++) {
float xi = x[i];
float ni = floor ((xi - b) / a + 0.5);
if (ni < 0) ni = 0;
if (ni >= k) ni = k - 1;
err1 += sqr (xi - (ni * a + b));
sn += ni;
sn2 += ni * ni;
sxn += ni * xi;
}
if (err1 == last_err) {
iter_last_err ++;
if (iter_last_err == 16) break;
} else {
last_err = err1;
iter_last_err = 0;
}
float det = sqr (sn) - sn2 * n;
b = (sn * sxn - sn2 * sx) / det;
a = (sn * sx - n * sxn) / det;
if (verbose) {
printf ("it %d, err1=%g \r", it, err1);
fflush(stdout);
}
}
if (verbose) printf("\n");
vmin = b;
vmax = b + a * (k - 1);
} else {
FAISS_THROW_MSG ("Invalid qtype");
}
vmax -= vmin;
}
void train_NonUniform(RangeStat rs, float rs_arg,
idx_t n, int d, int k, const float *x,
std::vector<float> & trained)
{
trained.resize (2 * d);
float * vmin = trained.data();
float * vmax = trained.data() + d;
if (rs == ScalarQuantizer::RS_minmax) {
memcpy (vmin, x, sizeof(*x) * d);
memcpy (vmax, x, sizeof(*x) * d);
for (size_t i = 1; i < n; i++) {
const float *xi = x + i * d;
for (size_t j = 0; j < d; j++) {
if (xi[j] < vmin[j]) vmin[j] = xi[j];
if (xi[j] > vmax[j]) vmax[j] = xi[j];
}
}
float *vdiff = vmax;
for (size_t j = 0; j < d; j++) {
float vexp = (vmax[j] - vmin[j]) * rs_arg;
vmin[j] -= vexp;
vmax[j] += vexp;
vdiff [j] = vmax[j] - vmin[j];
}
} else {
// transpose
std::vector<float> xt(n * d);
for (size_t i = 1; i < n; i++) {
const float *xi = x + i * d;
for (size_t j = 0; j < d; j++) {
xt[j * n + i] = xi[j];
}
}
std::vector<float> trained_d(2);
#pragma omp parallel for
for (size_t j = 0; j < d; j++) {
train_Uniform(rs, rs_arg,
n, k, xt.data() + j * n,
trained_d);
vmin[j] = trained_d[0];
vmax[j] = trained_d[1];
}
}
}
/*******************************************************************
* Similarity: gets vector components and computes a similarity wrt. a
* query vector stored in the object. The data fields just encapsulate
* an accumulator.
*/
template<int SIMDWIDTH>
struct SimilarityL2 {};
template<>
struct SimilarityL2<1> {
static constexpr int simdwidth = 1;
static constexpr MetricType metric_type = METRIC_L2;
const float *y, *yi;
explicit SimilarityL2 (const float * y): y(y) {}
/******* scalar accumulator *******/
float accu;
void begin () {
accu = 0;
yi = y;
}
void add_component (float x) {
float tmp = *yi++ - x;
accu += tmp * tmp;
}
void add_component_2 (float x1, float x2) {
float tmp = x1 - x2;
accu += tmp * tmp;
}
float result () {
return accu;
}
};
#ifdef USE_AVX
template<>
struct SimilarityL2<8> {
static constexpr int simdwidth = 8;
static constexpr MetricType metric_type = METRIC_L2;
const float *y, *yi;
explicit SimilarityL2 (const float * y): y(y) {}
__m256 accu8;
void begin_8 () {
accu8 = _mm256_setzero_ps();
yi = y;
}
void add_8_components (__m256 x) {
__m256 yiv = _mm256_loadu_ps (yi);
yi += 8;
__m256 tmp = yiv - x;
accu8 += tmp * tmp;
}
void add_8_components_2 (__m256 x, __m256 y) {
__m256 tmp = y - x;
accu8 += tmp * tmp;
}
float result_8 () {
__m256 sum = _mm256_hadd_ps(accu8, accu8);
__m256 sum2 = _mm256_hadd_ps(sum, sum);
// now add the 0th and 4th component
return
_mm_cvtss_f32 (_mm256_castps256_ps128(sum2)) +
_mm_cvtss_f32 (_mm256_extractf128_ps(sum2, 1));
}
};
#endif
template<int SIMDWIDTH>
struct SimilarityIP {};
template<>
struct SimilarityIP<1> {
static constexpr int simdwidth = 1;
static constexpr MetricType metric_type = METRIC_INNER_PRODUCT;
const float *y, *yi;
float accu;
explicit SimilarityIP (const float * y):
y (y) {}
void begin () {
accu = 0;
yi = y;
}
void add_component (float x) {
accu += *yi++ * x;
}
void add_component_2 (float x1, float x2) {
accu += x1 * x2;
}
float result () {
return accu;
}
};
#ifdef USE_AVX
template<>
struct SimilarityIP<8> {
static constexpr int simdwidth = 8;
static constexpr MetricType metric_type = METRIC_INNER_PRODUCT;
const float *y, *yi;
float accu;
explicit SimilarityIP (const float * y):
y (y) {}
__m256 accu8;
void begin_8 () {
accu8 = _mm256_setzero_ps();
yi = y;
}
void add_8_components (__m256 x) {
__m256 yiv = _mm256_loadu_ps (yi);
yi += 8;
accu8 += yiv * x;
}
void add_8_components_2 (__m256 x1, __m256 x2) {
accu8 += x1 * x2;
}
float result_8 () {
__m256 sum = _mm256_hadd_ps(accu8, accu8);
__m256 sum2 = _mm256_hadd_ps(sum, sum);
// now add the 0th and 4th component
return
_mm_cvtss_f32 (_mm256_castps256_ps128(sum2)) +
_mm_cvtss_f32 (_mm256_extractf128_ps(sum2, 1));
}
};
#endif
/*******************************************************************
* DistanceComputer: combines a similarity and a quantizer to do
* code-to-vector or code-to-code comparisons
*******************************************************************/
template<class Quantizer, class Similarity, int SIMDWIDTH>
struct DCTemplate : SQDistanceComputer {};
template<class Quantizer, class Similarity>
struct DCTemplate<Quantizer, Similarity, 1> : SQDistanceComputer
{
using Sim = Similarity;
Quantizer quant;
DCTemplate(size_t d, const std::vector<float> &trained):
quant(d, trained)
{}
float compute_distance(const float* x, const uint8_t* code) const {
Similarity sim(x);
sim.begin();
for (size_t i = 0; i < quant.d; i++) {
float xi = quant.reconstruct_component(code, i);
sim.add_component(xi);
}
return sim.result();
}
float compute_code_distance(const uint8_t* code1, const uint8_t* code2)
const {
Similarity sim(nullptr);
sim.begin();
for (size_t i = 0; i < quant.d; i++) {
float x1 = quant.reconstruct_component(code1, i);
float x2 = quant.reconstruct_component(code2, i);
sim.add_component_2(x1, x2);
}
return sim.result();
}
void set_query (const float *x) final {
q = x;
}
/// compute distance of vector i to current query
float operator () (idx_t i) final {
return compute_distance (q, codes + i * code_size);
}
float symmetric_dis (idx_t i, idx_t j) override {
return compute_code_distance (codes + i * code_size,
codes + j * code_size);
}
float query_to_code (const uint8_t * code) const {
return compute_distance (q, code);
}
};
#ifdef USE_AVX
template<class Quantizer, class Similarity>
struct DCTemplate<Quantizer, Similarity, 8> : SQDistanceComputer
{
using Sim = Similarity;
Quantizer quant;
DCTemplate(size_t d, const std::vector<float> &trained):
quant(d, trained)
{}
float compute_distance(const float* x, const uint8_t* code) const {
Similarity sim(x);
sim.begin_8();
for (size_t i = 0; i < quant.d; i += 8) {
__m256 xi = quant.reconstruct_8_components(code, i);
sim.add_8_components(xi);
}
return sim.result_8();
}
float compute_code_distance(const uint8_t* code1, const uint8_t* code2)
const {
Similarity sim(nullptr);
sim.begin_8();
for (size_t i = 0; i < quant.d; i += 8) {
__m256 x1 = quant.reconstruct_8_components(code1, i);
__m256 x2 = quant.reconstruct_8_components(code2, i);
sim.add_8_components_2(x1, x2);
}
return sim.result_8();
}
void set_query (const float *x) final {
q = x;
}
/// compute distance of vector i to current query
float operator () (idx_t i) final {
return compute_distance (q, codes + i * code_size);
}
float symmetric_dis (idx_t i, idx_t j) override {
return compute_code_distance (codes + i * code_size,
codes + j * code_size);
}
float query_to_code (const uint8_t * code) const {
return compute_distance (q, code);
}
};
#endif
/*******************************************************************
* DistanceComputerByte: computes distances in the integer domain
*******************************************************************/
template<class Similarity, int SIMDWIDTH>
struct DistanceComputerByte : SQDistanceComputer {};
template<class Similarity>
struct DistanceComputerByte<Similarity, 1> : SQDistanceComputer {
using Sim = Similarity;
int d;
std::vector<uint8_t> tmp;
DistanceComputerByte(int d, const std::vector<float> &): d(d), tmp(d) {
}
int compute_code_distance(const uint8_t* code1, const uint8_t* code2)
const {
int accu = 0;
for (int i = 0; i < d; i++) {
if (Sim::metric_type == METRIC_INNER_PRODUCT) {
accu += int(code1[i]) * code2[i];
} else {
int diff = int(code1[i]) - code2[i];
accu += diff * diff;
}
}
return accu;
}
void set_query (const float *x) final {
for (int i = 0; i < d; i++) {
tmp[i] = int(x[i]);
}
}
int compute_distance(const float* x, const uint8_t* code) {
set_query(x);
return compute_code_distance(tmp.data(), code);
}
/// compute distance of vector i to current query
float operator () (idx_t i) final {
return compute_distance (q, codes + i * code_size);
}
float symmetric_dis (idx_t i, idx_t j) override {
return compute_code_distance (codes + i * code_size,
codes + j * code_size);
}
float query_to_code (const uint8_t * code) const {
return compute_code_distance (tmp.data(), code);
}
};
#ifdef USE_AVX
template<class Similarity>
struct DistanceComputerByte<Similarity, 8> : SQDistanceComputer {
using Sim = Similarity;
int d;
std::vector<uint8_t> tmp;
DistanceComputerByte(int d, const std::vector<float> &): d(d), tmp(d) {
}
int compute_code_distance(const uint8_t* code1, const uint8_t* code2)
const {
// __m256i accu = _mm256_setzero_ps ();
__m256i accu = _mm256_setzero_si256 ();
for (int i = 0; i < d; i += 16) {
// load 16 bytes, convert to 16 uint16_t
__m256i c1 = _mm256_cvtepu8_epi16
(_mm_loadu_si128((__m128i*)(code1 + i)));
__m256i c2 = _mm256_cvtepu8_epi16
(_mm_loadu_si128((__m128i*)(code2 + i)));
__m256i prod32;
if (Sim::metric_type == METRIC_INNER_PRODUCT) {
prod32 = _mm256_madd_epi16(c1, c2);
} else {
__m256i diff = _mm256_sub_epi16(c1, c2);
prod32 = _mm256_madd_epi16(diff, diff);
}
accu = _mm256_add_epi32 (accu, prod32);
}
__m128i sum = _mm256_extractf128_si256(accu, 0);
sum = _mm_add_epi32 (sum, _mm256_extractf128_si256(accu, 1));
sum = _mm_hadd_epi32 (sum, sum);
sum = _mm_hadd_epi32 (sum, sum);
return _mm_cvtsi128_si32 (sum);
}
void set_query (const float *x) final {
/*
for (int i = 0; i < d; i += 8) {
__m256 xi = _mm256_loadu_ps (x + i);
__m256i ci = _mm256_cvtps_epi32(xi);
*/
for (int i = 0; i < d; i++) {
tmp[i] = int(x[i]);
}
}
int compute_distance(const float* x, const uint8_t* code) {
set_query(x);
return compute_code_distance(tmp.data(), code);
}
/// compute distance of vector i to current query
float operator () (idx_t i) final {
return compute_distance (q, codes + i * code_size);
}
float symmetric_dis (idx_t i, idx_t j) override {
return compute_code_distance (codes + i * code_size,
codes + j * code_size);
}
float query_to_code (const uint8_t * code) const {
return compute_code_distance (tmp.data(), code);
}
};
#endif
/*******************************************************************
* select_distance_computer: runtime selection of template
* specialization
*******************************************************************/
template<class Sim>
SQDistanceComputer *select_distance_computer (
QuantizerType qtype,
size_t d, const std::vector<float> & trained)
{
constexpr int SIMDWIDTH = Sim::simdwidth;
switch(qtype) {
case ScalarQuantizer::QT_8bit_uniform:
return new DCTemplate<QuantizerTemplate<Codec8bit, true, SIMDWIDTH>,
Sim, SIMDWIDTH>(d, trained);
case ScalarQuantizer::QT_4bit_uniform:
return new DCTemplate<QuantizerTemplate<Codec4bit, true, SIMDWIDTH>,
Sim, SIMDWIDTH>(d, trained);
case ScalarQuantizer::QT_8bit:
return new DCTemplate<QuantizerTemplate<Codec8bit, false, SIMDWIDTH>,
Sim, SIMDWIDTH>(d, trained);
case ScalarQuantizer::QT_4bit:
return new DCTemplate<QuantizerTemplate<Codec4bit, false, SIMDWIDTH>,
Sim, SIMDWIDTH>(d, trained);
case ScalarQuantizer::QT_fp16:
return new DCTemplate
<QuantizerFP16<SIMDWIDTH>, Sim, SIMDWIDTH>(d, trained);
case ScalarQuantizer::QT_8bit_direct:
if (d % 16 == 0) {
return new DistanceComputerByte<Sim, SIMDWIDTH>(d, trained);
} else {
return new DCTemplate
<Quantizer8bitDirect<SIMDWIDTH>, Sim, SIMDWIDTH>(d, trained);
}
}
FAISS_THROW_MSG ("unknown qtype");
return nullptr;
}
} // anonymous namespace
/*******************************************************************
* ScalarQuantizer implementation
********************************************************************/
ScalarQuantizer::ScalarQuantizer
(size_t d, QuantizerType qtype):
qtype (qtype), rangestat(RS_minmax), rangestat_arg(0), d (d)
{
switch (qtype) {
case QT_8bit:
case QT_8bit_uniform:
case QT_8bit_direct:
code_size = d;
break;
case QT_4bit:
case QT_4bit_uniform:
code_size = (d + 1) / 2;
break;
case QT_fp16:
code_size = d * 2;
break;
}
}
ScalarQuantizer::ScalarQuantizer ():
qtype(QT_8bit),
rangestat(RS_minmax), rangestat_arg(0), d (0), code_size(0)
{}
void ScalarQuantizer::train (size_t n, const float *x)
{
int bit_per_dim =
qtype == QT_4bit_uniform ? 4 :
qtype == QT_4bit ? 4 :
qtype == QT_8bit_uniform ? 8 :
qtype == QT_8bit ? 8 : -1;
switch (qtype) {
case QT_4bit_uniform: case QT_8bit_uniform:
train_Uniform (rangestat, rangestat_arg,
n * d, 1 << bit_per_dim, x, trained);
break;
case QT_4bit: case QT_8bit:
train_NonUniform (rangestat, rangestat_arg,
n, d, 1 << bit_per_dim, x, trained);
break;
case QT_fp16:
case QT_8bit_direct:
// no training necessary
break;
}
}
void ScalarQuantizer::compute_codes (const float * x,
uint8_t * codes,
size_t n) const
{
Quantizer *squant = select_quantizer (*this);
ScopeDeleter1<Quantizer> del(squant);
memset (codes, 0, code_size * n);
#pragma omp parallel for
for (size_t i = 0; i < n; i++)
squant->encode_vector (x + i * d, codes + i * code_size);
}
void ScalarQuantizer::decode (const uint8_t *codes, float *x, size_t n) const
{
Quantizer *squant = select_quantizer (*this);
ScopeDeleter1<Quantizer> del(squant);
#pragma omp parallel for
for (size_t i = 0; i < n; i++)
squant->decode_vector (codes + i * code_size, x + i * d);
}
SQDistanceComputer *
ScalarQuantizer::get_distance_computer (MetricType metric) const
{
#ifdef USE_AVX
if (d % 8 == 0) {
if (metric == METRIC_L2) {
return select_distance_computer<SimilarityL2<8> >
(qtype, d, trained);
} else {
return select_distance_computer<SimilarityIP<8> >
(qtype, d, trained);
}
} else
#endif
{
if (metric == METRIC_L2) {
return select_distance_computer<SimilarityL2<1> >
(qtype, d, trained);
} else {
return select_distance_computer<SimilarityIP<1> >
(qtype, d, trained);
}
}
}
/*******************************************************************
* IndexScalarQuantizer/IndexIVFScalarQuantizer scanner object
*
* It is an InvertedListScanner, but is designed to work with
* IndexScalarQuantizer as well.
********************************************************************/
namespace {
template<bool store_pairs, class DCClass>
struct IVFSQScannerIP: InvertedListScanner {
DCClass dc;
bool by_residual;
size_t code_size;
idx_t list_no; /// current list (set to 0 for Flat index
float accu0; /// added to all distances
IVFSQScannerIP(int d, const std::vector<float> & trained,
size_t code_size, bool by_residual=false):
dc(d, trained), by_residual(by_residual),
code_size(code_size), list_no(0), accu0(0)
{}
void set_query (const float *query) override {
dc.set_query (query);
}
void set_list (idx_t list_no, float coarse_dis) override {
this->list_no = list_no;
accu0 = by_residual ? coarse_dis : 0;
}
float distance_to_code (const uint8_t *code) const final {
return accu0 + dc.query_to_code (code);
}
size_t scan_codes (size_t list_size,
const uint8_t *codes,
const idx_t *ids,
float *simi, idx_t *idxi,
size_t k) const override
{
size_t nup = 0;
for (size_t j = 0; j < list_size; j++) {
float accu = accu0 + dc.query_to_code (codes);
if (accu > simi [0]) {
minheap_pop (k, simi, idxi);
long id = store_pairs ? (list_no << 32 | j) : ids[j];
minheap_push (k, simi, idxi, accu, id);
nup++;
}
codes += code_size;
}
return nup;
}
void scan_codes_range (size_t list_size,
const uint8_t *codes,
const idx_t *ids,
float radius,
RangeQueryResult & res) const override
{
for (size_t j = 0; j < list_size; j++) {
float accu = accu0 + dc.query_to_code (codes);
if (accu > radius) {
long id = store_pairs ? (list_no << 32 | j) : ids[j];
res.add (accu, id);
}
codes += code_size;
}
}
};
template<bool store_pairs, class DCClass>
struct IVFSQScannerL2: InvertedListScanner {
DCClass dc;
bool by_residual;
size_t code_size;
const Index *quantizer;
idx_t list_no; /// current inverted list
const float *x; /// current query
std::vector<float> tmp;
IVFSQScannerL2(int d, const std::vector<float> & trained,
size_t code_size, const Index *quantizer,
bool by_residual):
dc(d, trained), by_residual(by_residual),
code_size(code_size), quantizer(quantizer),
list_no (0), x (nullptr), tmp (d)
{
}
void set_query (const float *query) override {
x = query;
if (!quantizer) {
dc.set_query (query);
}
}
void set_list (idx_t list_no, float /*coarse_dis*/) override {
if (by_residual) {
this->list_no = list_no;
// shift of x_in wrt centroid
quantizer->compute_residual (x, tmp.data(), list_no);
dc.set_query (tmp.data ());
} else {
dc.set_query (x);
}
}
float distance_to_code (const uint8_t *code) const final {
return dc.query_to_code (code);
}
size_t scan_codes (size_t list_size,
const uint8_t *codes,
const idx_t *ids,
float *simi, idx_t *idxi,
size_t k) const override
{
size_t nup = 0;
for (size_t j = 0; j < list_size; j++) {
float dis = dc.query_to_code (codes);
if (dis < simi [0]) {
maxheap_pop (k, simi, idxi);
long id = store_pairs ? (list_no << 32 | j) : ids[j];
maxheap_push (k, simi, idxi, dis, id);
nup++;
}
codes += code_size;
}
return nup;
}
void scan_codes_range (size_t list_size,
const uint8_t *codes,
const idx_t *ids,
float radius,
RangeQueryResult & res) const override
{
for (size_t j = 0; j < list_size; j++) {
float dis = dc.query_to_code (codes);
if (dis < radius) {
long id = store_pairs ? (list_no << 32 | j) : ids[j];
res.add (dis, id);
}
codes += code_size;
}
}
};
template<class DCClass>
InvertedListScanner* sel2_InvertedListScanner
(const ScalarQuantizer *sq,
const Index *quantizer, bool store_pairs, bool r)
{
if (DCClass::Sim::metric_type == METRIC_L2) {
if (store_pairs) {
return new IVFSQScannerL2<true, DCClass>
(sq->d, sq->trained, sq->code_size, quantizer, r);
} else {
return new IVFSQScannerL2<false, DCClass>
(sq->d, sq->trained, sq->code_size, quantizer, r);
}
} else {
if (store_pairs) {
return new IVFSQScannerIP<true, DCClass>
(sq->d, sq->trained, sq->code_size, r);
} else {
return new IVFSQScannerIP<false, DCClass>
(sq->d, sq->trained, sq->code_size, r);
}
}
}
template<class Similarity, class Codec, bool uniform>
InvertedListScanner* sel12_InvertedListScanner
(const ScalarQuantizer *sq,
const Index *quantizer, bool store_pairs, bool r)
{
constexpr int SIMDWIDTH = Similarity::simdwidth;
using QuantizerClass = QuantizerTemplate<Codec, uniform, SIMDWIDTH>;
using DCClass = DCTemplate<QuantizerClass, Similarity, SIMDWIDTH>;
return sel2_InvertedListScanner<DCClass> (sq, quantizer, store_pairs, r);
}
template<class Similarity>
InvertedListScanner* sel1_InvertedListScanner
(const ScalarQuantizer *sq, const Index *quantizer,
bool store_pairs, bool r)
{
constexpr int SIMDWIDTH = Similarity::simdwidth;
switch(sq->qtype) {
case ScalarQuantizer::QT_8bit_uniform:
return sel12_InvertedListScanner
<Similarity, Codec8bit, true>(sq, quantizer, store_pairs, r);
case ScalarQuantizer::QT_4bit_uniform:
return sel12_InvertedListScanner
<Similarity, Codec4bit, true>(sq, quantizer, store_pairs, r);
case ScalarQuantizer::QT_8bit:
return sel12_InvertedListScanner
<Similarity, Codec8bit, false>(sq, quantizer, store_pairs, r);
case ScalarQuantizer::QT_4bit:
return sel12_InvertedListScanner
<Similarity, Codec4bit, false>(sq, quantizer, store_pairs, r);
case ScalarQuantizer::QT_fp16:
return sel2_InvertedListScanner
<DCTemplate<QuantizerFP16<SIMDWIDTH>, Similarity, SIMDWIDTH> >
(sq, quantizer, store_pairs, r);
case ScalarQuantizer::QT_8bit_direct:
if (sq->d % 16 == 0) {
return sel2_InvertedListScanner
<DistanceComputerByte<Similarity, SIMDWIDTH> >
(sq, quantizer, store_pairs, r);
} else {
return sel2_InvertedListScanner
<DCTemplate<Quantizer8bitDirect<SIMDWIDTH>,
Similarity, SIMDWIDTH> >
(sq, quantizer, store_pairs, r);
}
}
FAISS_THROW_MSG ("unknown qtype");
return nullptr;
}
template<int SIMDWIDTH>
InvertedListScanner* sel0_InvertedListScanner
(MetricType mt, const ScalarQuantizer *sq,
const Index *quantizer, bool store_pairs, bool by_residual)
{
if (mt == METRIC_L2) {
return sel1_InvertedListScanner<SimilarityL2<SIMDWIDTH> >
(sq, quantizer, store_pairs, by_residual);
} else {
return sel1_InvertedListScanner<SimilarityIP<SIMDWIDTH> >
(sq, quantizer, store_pairs, by_residual);
}
}
InvertedListScanner* select_InvertedListScanner
(MetricType mt, const ScalarQuantizer *sq,
const Index *quantizer, bool store_pairs, bool by_residual=false)
{
#ifdef USE_AVX
if (sq->d % 8 == 0) {
return sel0_InvertedListScanner<8>
(mt, sq, quantizer, store_pairs, by_residual);
} else
#endif
{
return sel0_InvertedListScanner<1>
(mt, sq, quantizer, store_pairs, by_residual);
}
}
} // anonymous namespace
/*******************************************************************
* IndexScalarQuantizer implementation
********************************************************************/
IndexScalarQuantizer::IndexScalarQuantizer
(int d, ScalarQuantizer::QuantizerType qtype,
MetricType metric):
Index(d, metric),
sq (d, qtype)
{
is_trained =
qtype == ScalarQuantizer::QT_fp16 ||
qtype == ScalarQuantizer::QT_8bit_direct;
code_size = sq.code_size;
}
IndexScalarQuantizer::IndexScalarQuantizer ():
IndexScalarQuantizer(0, ScalarQuantizer::QT_8bit)
{}
void IndexScalarQuantizer::train(idx_t n, const float* x)
{
sq.train(n, x);
is_trained = true;
}
void IndexScalarQuantizer::add(idx_t n, const float* x)
{
FAISS_THROW_IF_NOT (is_trained);
codes.resize ((n + ntotal) * code_size);
sq.compute_codes (x, &codes[ntotal * code_size], n);
ntotal += n;
}
void IndexScalarQuantizer::search(
idx_t n,
const float* x,
idx_t k,
float* distances,
idx_t* labels) const
{
FAISS_THROW_IF_NOT (is_trained);
#pragma omp parallel
{
InvertedListScanner* scanner = select_InvertedListScanner
(metric_type, &sq, nullptr, true);
ScopeDeleter1<InvertedListScanner> del(scanner);
#pragma omp for
for (size_t i = 0; i < n; i++) {
float * D = distances + k * i;
idx_t * I = labels + k * i;
// re-order heap
if (metric_type == METRIC_L2) {
maxheap_heapify (k, D, I);
} else {
minheap_heapify (k, D, I);
}
scanner->set_query (x + i * d);
scanner->scan_codes (ntotal, codes.data(),
nullptr, D, I, k);
// re-order heap
if (metric_type == METRIC_L2) {
maxheap_reorder (k, D, I);
} else {
minheap_reorder (k, D, I);
}
}
}
}
DistanceComputer *IndexScalarQuantizer::get_distance_computer () const
{
SQDistanceComputer *dc = sq.get_distance_computer (metric_type);
dc->code_size = sq.code_size;
dc->codes = codes.data();
return dc;
}
void IndexScalarQuantizer::reset()
{
codes.clear();
ntotal = 0;
}
void IndexScalarQuantizer::reconstruct_n(
idx_t i0, idx_t ni, float* recons) const
{
Quantizer *squant = select_quantizer (sq);
ScopeDeleter1<Quantizer> del (squant);
for (size_t i = 0; i < ni; i++) {
squant->decode_vector(&codes[(i + i0) * code_size], recons + i * d);
}
}
void IndexScalarQuantizer::reconstruct(idx_t key, float* recons) const
{
reconstruct_n(key, 1, recons);
}
/*******************************************************************
* IndexIVFScalarQuantizer implementation
********************************************************************/
IndexIVFScalarQuantizer::IndexIVFScalarQuantizer
(Index *quantizer, size_t d, size_t nlist,
QuantizerType qtype, MetricType metric):
IndexIVF (quantizer, d, nlist, 0, metric),
sq (d, qtype)
{
code_size = sq.code_size;
// was not known at construction time
invlists->code_size = code_size;
is_trained = false;
by_residual = true;
}
IndexIVFScalarQuantizer::IndexIVFScalarQuantizer ():
IndexIVF ()
{
by_residual = true;
}
void IndexIVFScalarQuantizer::train_residual (idx_t n, const float *x)
{
const float * x_in = x;
// 100k points more than enough
x = fvecs_maybe_subsample (
d, (size_t*)&n, 100000,
x, verbose, 1234);
ScopeDeleter<float> del_x (x_in == x ? nullptr : x);
if (by_residual) {
long * idx = new long [n];
ScopeDeleter<long> del (idx);
quantizer->assign (n, x, idx);
float *residuals = new float [n * d];
ScopeDeleter<float> del2 (residuals);
#pragma omp parallel for
for (idx_t i = 0; i < n; i++) {
quantizer->compute_residual (x + i * d, residuals + i * d, idx[i]);
}
sq.train (n, residuals);
} else {
sq.train (n, x);
}
}
void IndexIVFScalarQuantizer::encode_vectors(idx_t n, const float* x,
const idx_t *list_nos,
uint8_t * codes) const
{
Quantizer *squant = select_quantizer (sq);
ScopeDeleter1<Quantizer> del (squant);
memset(codes, 0, code_size * n);
#pragma omp parallel
{
std::vector<float> residual (d);
// each thread takes care of a subset of lists
#pragma omp for
for (size_t i = 0; i < n; i++) {
long list_no = list_nos [i];
if (list_no >= 0) {
const float *xi = x + i * d;
if (by_residual) {
quantizer->compute_residual (
xi, residual.data(), list_no);
xi = residual.data ();
}
squant->encode_vector (xi, codes + i * code_size);
} else {
memset (codes + i * code_size, 0, code_size);
}
}
}
}
void IndexIVFScalarQuantizer::add_with_ids
(idx_t n, const float * x, const long *xids)
{
FAISS_THROW_IF_NOT (is_trained);
long * idx = new long [n];
ScopeDeleter<long> del (idx);
quantizer->assign (n, x, idx);
size_t nadd = 0;
Quantizer *squant = select_quantizer (sq);
ScopeDeleter1<Quantizer> del2 (squant);
#pragma omp parallel reduction(+: nadd)
{
std::vector<float> residual (d);
std::vector<uint8_t> one_code (code_size);
int nt = omp_get_num_threads();
int rank = omp_get_thread_num();
// each thread takes care of a subset of lists
for (size_t i = 0; i < n; i++) {
long list_no = idx [i];
if (list_no >= 0 && list_no % nt == rank) {
long id = xids ? xids[i] : ntotal + i;
const float * xi = x + i * d;
if (by_residual) {
quantizer->compute_residual (xi, residual.data(), list_no);
xi = residual.data();
}
memset (one_code.data(), 0, code_size);
squant->encode_vector (xi, one_code.data());
invlists->add_entry (list_no, id, one_code.data());
nadd++;
}
}
}
ntotal += n;
}
InvertedListScanner* IndexIVFScalarQuantizer::get_InvertedListScanner
(bool store_pairs) const
{
return select_InvertedListScanner (metric_type, &sq, quantizer, store_pairs,
by_residual);
}
void IndexIVFScalarQuantizer::reconstruct_from_offset (long list_no,
long offset,
float* recons) const
{
std::vector<float> centroid(d);
quantizer->reconstruct (list_no, centroid.data());
const uint8_t* code = invlists->get_single_code (list_no, offset);
sq.decode (code, recons, 1);
for (int i = 0; i < d; ++i) {
recons[i] += centroid[i];
}
}
} // namespace faiss