1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.5"/>
<title>Faiss: /tmp/faiss/gpu/utils/Tensor-inl.cuh Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
$(document).ready(function() { searchBox.OnSelectItem(0); });
</script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr style="height: 56px;">
<td style="padding-left: 0.5em;">
<div id="projectname">Faiss
</div>
</td>
</tr>
</tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.5 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
<div id="navrow1" class="tabs">
<ul class="tablist">
<li><a href="index.html"><span>Main Page</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li class="current"><a href="files.html"><span>Files</span></a></li>
<li>
<div id="MSearchBox" class="MSearchBoxInactive">
<span class="left">
<img id="MSearchSelect" src="search/mag_sel.png"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
alt=""/>
<input type="text" id="MSearchField" value="Search" accesskey="S"
onfocus="searchBox.OnSearchFieldFocus(true)"
onblur="searchBox.OnSearchFieldFocus(false)"
onkeyup="searchBox.OnSearchFieldChange(event)"/>
</span><span class="right">
<a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
</span>
</div>
</li>
</ul>
</div>
<div id="navrow2" class="tabs2">
<ul class="tablist">
<li><a href="files.html"><span>File List</span></a></li>
</ul>
</div>
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
onkeydown="return searchBox.OnSearchSelectKey(event)">
<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark"> </span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark"> </span>Classes</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark"> </span>Namespaces</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark"> </span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark"> </span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark"> </span>Typedefs</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(6)"><span class="SelectionMark"> </span>Enumerations</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(7)"><span class="SelectionMark"> </span>Enumerator</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(8)"><span class="SelectionMark"> </span>Friends</a></div>
<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0"
name="MSearchResults" id="MSearchResults">
</iframe>
</div>
<div id="nav-path" class="navpath">
<ul>
<li class="navelem"><a class="el" href="dir_af0e5773a0d3761542ab6067d117c294.html">gpu</a></li><li class="navelem"><a class="el" href="dir_4b23abee0b4e5d71a28bc7475a9e97e1.html">utils</a></li> </ul>
</div>
</div><!-- top -->
<div class="header">
<div class="headertitle">
<div class="title">Tensor-inl.cuh</div> </div>
</div><!--header-->
<div class="contents">
<div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno"> 1</span> <span class="comment">/**</span></div>
<div class="line"><a name="l00002"></a><span class="lineno"> 2</span> <span class="comment"> * Copyright (c) 2015-present, Facebook, Inc.</span></div>
<div class="line"><a name="l00003"></a><span class="lineno"> 3</span> <span class="comment"> * All rights reserved.</span></div>
<div class="line"><a name="l00004"></a><span class="lineno"> 4</span> <span class="comment"> *</span></div>
<div class="line"><a name="l00005"></a><span class="lineno"> 5</span> <span class="comment"> * This source code is licensed under the BSD+Patents license found in the</span></div>
<div class="line"><a name="l00006"></a><span class="lineno"> 6</span> <span class="comment"> * LICENSE file in the root directory of this source tree.</span></div>
<div class="line"><a name="l00007"></a><span class="lineno"> 7</span> <span class="comment"> */</span></div>
<div class="line"><a name="l00008"></a><span class="lineno"> 8</span> </div>
<div class="line"><a name="l00009"></a><span class="lineno"> 9</span> </div>
<div class="line"><a name="l00010"></a><span class="lineno"> 10</span> <span class="preprocessor">#include "../GpuFaissAssert.h"</span></div>
<div class="line"><a name="l00011"></a><span class="lineno"> 11</span> <span class="preprocessor">#include "DeviceUtils.h"</span></div>
<div class="line"><a name="l00012"></a><span class="lineno"> 12</span> <span class="preprocessor">#include <limits></span></div>
<div class="line"><a name="l00013"></a><span class="lineno"> 13</span> </div>
<div class="line"><a name="l00014"></a><span class="lineno"> 14</span> <span class="keyword">namespace </span>faiss { <span class="keyword">namespace </span>gpu {</div>
<div class="line"><a name="l00015"></a><span class="lineno"> 15</span> </div>
<div class="line"><a name="l00016"></a><span class="lineno"> 16</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00017"></a><span class="lineno"> 17</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00018"></a><span class="lineno"> 18</span> __host__ __device__</div>
<div class="line"><a name="l00019"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd"> 19</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::Tensor</a>()</div>
<div class="line"><a name="l00020"></a><span class="lineno"> 20</span>  : data_(nullptr) {</div>
<div class="line"><a name="l00021"></a><span class="lineno"> 21</span>  static_assert(Dim > 0, <span class="stringliteral">"must have > 0 dimensions"</span>);</div>
<div class="line"><a name="l00022"></a><span class="lineno"> 22</span> </div>
<div class="line"><a name="l00023"></a><span class="lineno"> 23</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
<div class="line"><a name="l00024"></a><span class="lineno"> 24</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">size_</a>[i] = 0;</div>
<div class="line"><a name="l00025"></a><span class="lineno"> 25</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[i] = (IndexT) 1;</div>
<div class="line"><a name="l00026"></a><span class="lineno"> 26</span>  }</div>
<div class="line"><a name="l00027"></a><span class="lineno"> 27</span> }</div>
<div class="line"><a name="l00028"></a><span class="lineno"> 28</span> </div>
<div class="line"><a name="l00029"></a><span class="lineno"> 29</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00030"></a><span class="lineno"> 30</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00031"></a><span class="lineno"> 31</span> __host__ __device__</div>
<div class="line"><a name="l00032"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a4396d8789bb829a4d614900b2a632bc9"> 32</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::Tensor</a>(</div>
<div class="line"><a name="l00033"></a><span class="lineno"> 33</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a>& t) {</div>
<div class="line"><a name="l00034"></a><span class="lineno"> 34</span>  this->operator=(t);</div>
<div class="line"><a name="l00035"></a><span class="lineno"> 35</span> }</div>
<div class="line"><a name="l00036"></a><span class="lineno"> 36</span> </div>
<div class="line"><a name="l00037"></a><span class="lineno"> 37</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00038"></a><span class="lineno"> 38</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00039"></a><span class="lineno"> 39</span> __host__ __device__</div>
<div class="line"><a name="l00040"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a37db8663b2fd9e1da8c4dea4e2bdb1f3"> 40</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::Tensor</a>(</div>
<div class="line"><a name="l00041"></a><span class="lineno"> 41</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a>&& t) {</div>
<div class="line"><a name="l00042"></a><span class="lineno"> 42</span>  this->operator=(std::move(t));</div>
<div class="line"><a name="l00043"></a><span class="lineno"> 43</span> }</div>
<div class="line"><a name="l00044"></a><span class="lineno"> 44</span> </div>
<div class="line"><a name="l00045"></a><span class="lineno"> 45</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00046"></a><span class="lineno"> 46</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00047"></a><span class="lineno"> 47</span> __host__ __device__</div>
<div class="line"><a name="l00048"></a><span class="lineno"> 48</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a>&</div>
<div class="line"><a name="l00049"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a0d831a352531281e06250cc6fe52a38a"> 49</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0d831a352531281e06250cc6fe52a38a">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::operator=</a>(</div>
<div class="line"><a name="l00050"></a><span class="lineno"> 50</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a>& t) {</div>
<div class="line"><a name="l00051"></a><span class="lineno"> 51</span>  data_ = t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2ec506a25e46cf7001060a6ba5ae3b94">data_</a>;</div>
<div class="line"><a name="l00052"></a><span class="lineno"> 52</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
<div class="line"><a name="l00053"></a><span class="lineno"> 53</span>  size_[i] = t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">size_</a>[i];</div>
<div class="line"><a name="l00054"></a><span class="lineno"> 54</span>  stride_[i] = t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[i];</div>
<div class="line"><a name="l00055"></a><span class="lineno"> 55</span>  }</div>
<div class="line"><a name="l00056"></a><span class="lineno"> 56</span> </div>
<div class="line"><a name="l00057"></a><span class="lineno"> 57</span>  <span class="keywordflow">return</span> *<span class="keyword">this</span>;</div>
<div class="line"><a name="l00058"></a><span class="lineno"> 58</span> }</div>
<div class="line"><a name="l00059"></a><span class="lineno"> 59</span> </div>
<div class="line"><a name="l00060"></a><span class="lineno"> 60</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00061"></a><span class="lineno"> 61</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00062"></a><span class="lineno"> 62</span> __host__ __device__</div>
<div class="line"><a name="l00063"></a><span class="lineno"> 63</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a>&</div>
<div class="line"><a name="l00064"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#ae086a03b8067e18d0c2dda0892dc9e39"> 64</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0d831a352531281e06250cc6fe52a38a">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::operator=</a>(</div>
<div class="line"><a name="l00065"></a><span class="lineno"> 65</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a>&& t) {</div>
<div class="line"><a name="l00066"></a><span class="lineno"> 66</span>  data_ = t.data_; t.data_ = <span class="keyword">nullptr</span>;</div>
<div class="line"><a name="l00067"></a><span class="lineno"> 67</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
<div class="line"><a name="l00068"></a><span class="lineno"> 68</span>  stride_[i] = t.stride_[i]; t.stride_[i] = 0;</div>
<div class="line"><a name="l00069"></a><span class="lineno"> 69</span>  size_[i] = t.size_[i]; t.size_[i] = 0;</div>
<div class="line"><a name="l00070"></a><span class="lineno"> 70</span>  }</div>
<div class="line"><a name="l00071"></a><span class="lineno"> 71</span> </div>
<div class="line"><a name="l00072"></a><span class="lineno"> 72</span>  <span class="keywordflow">return</span> *<span class="keyword">this</span>;</div>
<div class="line"><a name="l00073"></a><span class="lineno"> 73</span> }</div>
<div class="line"><a name="l00074"></a><span class="lineno"> 74</span> </div>
<div class="line"><a name="l00075"></a><span class="lineno"> 75</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00076"></a><span class="lineno"> 76</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00077"></a><span class="lineno"> 77</span> __host__ __device__</div>
<div class="line"><a name="l00078"></a><span class="lineno"> 78</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::</a></div>
<div class="line"><a name="l00079"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a88210dee96fc97b00f0ab45749528fe9"> 79</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor</a>(DataPtrType data, <span class="keyword">const</span> IndexT sizes[Dim])</div>
<div class="line"><a name="l00080"></a><span class="lineno"> 80</span>  : data_(data) {</div>
<div class="line"><a name="l00081"></a><span class="lineno"> 81</span>  static_assert(Dim > 0, <span class="stringliteral">"must have > 0 dimensions"</span>);</div>
<div class="line"><a name="l00082"></a><span class="lineno"> 82</span> </div>
<div class="line"><a name="l00083"></a><span class="lineno"> 83</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
<div class="line"><a name="l00084"></a><span class="lineno"> 84</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">size_</a>[i] = <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#abc0ecc4f882ee09632b5a06be0619adb">sizes</a>[i];</div>
<div class="line"><a name="l00085"></a><span class="lineno"> 85</span>  }</div>
<div class="line"><a name="l00086"></a><span class="lineno"> 86</span> </div>
<div class="line"><a name="l00087"></a><span class="lineno"> 87</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[Dim - 1] = (IndexT) 1;</div>
<div class="line"><a name="l00088"></a><span class="lineno"> 88</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = Dim - 2; i >= 0; --i) {</div>
<div class="line"><a name="l00089"></a><span class="lineno"> 89</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[i] = <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[i + 1] * <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#abc0ecc4f882ee09632b5a06be0619adb">sizes</a>[i + 1];</div>
<div class="line"><a name="l00090"></a><span class="lineno"> 90</span>  }</div>
<div class="line"><a name="l00091"></a><span class="lineno"> 91</span> }</div>
<div class="line"><a name="l00092"></a><span class="lineno"> 92</span> </div>
<div class="line"><a name="l00093"></a><span class="lineno"> 93</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00094"></a><span class="lineno"> 94</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00095"></a><span class="lineno"> 95</span> __host__ __device__</div>
<div class="line"><a name="l00096"></a><span class="lineno"> 96</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::</a></div>
<div class="line"><a name="l00097"></a><span class="lineno"> 97</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor</a>(DataPtrType data, std::initializer_list<IndexT> sizes)</div>
<div class="line"><a name="l00098"></a><span class="lineno"> 98</span>  : data_(data) {</div>
<div class="line"><a name="l00099"></a><span class="lineno"> 99</span>  GPU_FAISS_ASSERT(sizes.size() == Dim);</div>
<div class="line"><a name="l00100"></a><span class="lineno"> 100</span>  static_assert(Dim > 0, <span class="stringliteral">"must have > 0 dimensions"</span>);</div>
<div class="line"><a name="l00101"></a><span class="lineno"> 101</span> </div>
<div class="line"><a name="l00102"></a><span class="lineno"> 102</span>  <span class="keywordtype">int</span> i = 0;</div>
<div class="line"><a name="l00103"></a><span class="lineno"> 103</span>  <span class="keywordflow">for</span> (<span class="keyword">auto</span> s : sizes) {</div>
<div class="line"><a name="l00104"></a><span class="lineno"> 104</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">size_</a>[i++] = s;</div>
<div class="line"><a name="l00105"></a><span class="lineno"> 105</span>  }</div>
<div class="line"><a name="l00106"></a><span class="lineno"> 106</span> </div>
<div class="line"><a name="l00107"></a><span class="lineno"> 107</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[Dim - 1] = (IndexT) 1;</div>
<div class="line"><a name="l00108"></a><span class="lineno"> 108</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> j = Dim - 2; j >= 0; --j) {</div>
<div class="line"><a name="l00109"></a><span class="lineno"> 109</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[j] = <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[j + 1] * <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">size_</a>[j + 1];</div>
<div class="line"><a name="l00110"></a><span class="lineno"> 110</span>  }</div>
<div class="line"><a name="l00111"></a><span class="lineno"> 111</span> }</div>
<div class="line"><a name="l00112"></a><span class="lineno"> 112</span> </div>
<div class="line"><a name="l00113"></a><span class="lineno"> 113</span> </div>
<div class="line"><a name="l00114"></a><span class="lineno"> 114</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00115"></a><span class="lineno"> 115</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00116"></a><span class="lineno"> 116</span> __host__ __device__</div>
<div class="line"><a name="l00117"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#ac651b20d86813b8928f05cde4fb1ff7d"> 117</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::Tensor</a>(</div>
<div class="line"><a name="l00118"></a><span class="lineno"> 118</span>  DataPtrType data, <span class="keyword">const</span> IndexT sizes[Dim], <span class="keyword">const</span> IndexT strides[Dim])</div>
<div class="line"><a name="l00119"></a><span class="lineno"> 119</span>  : data_(data) {</div>
<div class="line"><a name="l00120"></a><span class="lineno"> 120</span>  static_assert(Dim > 0, <span class="stringliteral">"must have > 0 dimensions"</span>);</div>
<div class="line"><a name="l00121"></a><span class="lineno"> 121</span> </div>
<div class="line"><a name="l00122"></a><span class="lineno"> 122</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
<div class="line"><a name="l00123"></a><span class="lineno"> 123</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">size_</a>[i] = sizes[i];</div>
<div class="line"><a name="l00124"></a><span class="lineno"> 124</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[i] = <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a87a777247486756e99060547a3cc833a">strides</a>[i];</div>
<div class="line"><a name="l00125"></a><span class="lineno"> 125</span>  }</div>
<div class="line"><a name="l00126"></a><span class="lineno"> 126</span> }</div>
<div class="line"><a name="l00127"></a><span class="lineno"> 127</span> </div>
<div class="line"><a name="l00128"></a><span class="lineno"> 128</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00129"></a><span class="lineno"> 129</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00130"></a><span class="lineno"> 130</span> __host__ <span class="keywordtype">void</span></div>
<div class="line"><a name="l00131"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a6dc00c182a92389b74c89ba7fcab40d3"> 131</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6dc00c182a92389b74c89ba7fcab40d3">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::copyFrom</a>(</div>
<div class="line"><a name="l00132"></a><span class="lineno"> 132</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a>& t,</div>
<div class="line"><a name="l00133"></a><span class="lineno"> 133</span>  cudaStream_t stream) {</div>
<div class="line"><a name="l00134"></a><span class="lineno"> 134</span>  <span class="comment">// The tensor must be fully contiguous</span></div>
<div class="line"><a name="l00135"></a><span class="lineno"> 135</span>  GPU_FAISS_ASSERT(this->isContiguous());</div>
<div class="line"><a name="l00136"></a><span class="lineno"> 136</span> </div>
<div class="line"><a name="l00137"></a><span class="lineno"> 137</span>  <span class="comment">// Size must be the same (since dimensions are checked and</span></div>
<div class="line"><a name="l00138"></a><span class="lineno"> 138</span>  <span class="comment">// continuity is assumed, we need only check total number of</span></div>
<div class="line"><a name="l00139"></a><span class="lineno"> 139</span>  <span class="comment">// elements</span></div>
<div class="line"><a name="l00140"></a><span class="lineno"> 140</span>  GPU_FAISS_ASSERT(this->numElements() == t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">numElements</a>());</div>
<div class="line"><a name="l00141"></a><span class="lineno"> 141</span> </div>
<div class="line"><a name="l00142"></a><span class="lineno"> 142</span>  <span class="keywordflow">if</span> (t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">numElements</a>() > 0) {</div>
<div class="line"><a name="l00143"></a><span class="lineno"> 143</span>  GPU_FAISS_ASSERT(this->data_);</div>
<div class="line"><a name="l00144"></a><span class="lineno"> 144</span>  GPU_FAISS_ASSERT(t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>());</div>
<div class="line"><a name="l00145"></a><span class="lineno"> 145</span> </div>
<div class="line"><a name="l00146"></a><span class="lineno"> 146</span>  <span class="keywordtype">int</span> ourDev = getDeviceForAddress(this->data_);</div>
<div class="line"><a name="l00147"></a><span class="lineno"> 147</span>  <span class="keywordtype">int</span> tDev = getDeviceForAddress(t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>());</div>
<div class="line"><a name="l00148"></a><span class="lineno"> 148</span> </div>
<div class="line"><a name="l00149"></a><span class="lineno"> 149</span>  <span class="keywordflow">if</span> (tDev == -1) {</div>
<div class="line"><a name="l00150"></a><span class="lineno"> 150</span>  CUDA_VERIFY(cudaMemcpyAsync(this->data_,</div>
<div class="line"><a name="l00151"></a><span class="lineno"> 151</span>  t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>(),</div>
<div class="line"><a name="l00152"></a><span class="lineno"> 152</span>  this->getSizeInBytes(),</div>
<div class="line"><a name="l00153"></a><span class="lineno"> 153</span>  ourDev == -1 ? cudaMemcpyHostToHost :</div>
<div class="line"><a name="l00154"></a><span class="lineno"> 154</span>  cudaMemcpyHostToDevice,</div>
<div class="line"><a name="l00155"></a><span class="lineno"> 155</span>  stream));</div>
<div class="line"><a name="l00156"></a><span class="lineno"> 156</span>  } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00157"></a><span class="lineno"> 157</span>  CUDA_VERIFY(cudaMemcpyAsync(this->data_,</div>
<div class="line"><a name="l00158"></a><span class="lineno"> 158</span>  t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>(),</div>
<div class="line"><a name="l00159"></a><span class="lineno"> 159</span>  this->getSizeInBytes(),</div>
<div class="line"><a name="l00160"></a><span class="lineno"> 160</span>  ourDev == -1 ? cudaMemcpyDeviceToHost :</div>
<div class="line"><a name="l00161"></a><span class="lineno"> 161</span>  cudaMemcpyDeviceToDevice,</div>
<div class="line"><a name="l00162"></a><span class="lineno"> 162</span>  stream));</div>
<div class="line"><a name="l00163"></a><span class="lineno"> 163</span>  }</div>
<div class="line"><a name="l00164"></a><span class="lineno"> 164</span>  }</div>
<div class="line"><a name="l00165"></a><span class="lineno"> 165</span> }</div>
<div class="line"><a name="l00166"></a><span class="lineno"> 166</span> </div>
<div class="line"><a name="l00167"></a><span class="lineno"> 167</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00168"></a><span class="lineno"> 168</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00169"></a><span class="lineno"> 169</span> __host__ <span class="keywordtype">void</span></div>
<div class="line"><a name="l00170"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a6cc21376070a03d77661d6e333972c6a"> 170</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6cc21376070a03d77661d6e333972c6a">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::copyTo</a>(</div>
<div class="line"><a name="l00171"></a><span class="lineno"> 171</span>  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a>& t,</div>
<div class="line"><a name="l00172"></a><span class="lineno"> 172</span>  cudaStream_t stream) {</div>
<div class="line"><a name="l00173"></a><span class="lineno"> 173</span>  <span class="comment">// The tensor must be fully contiguous</span></div>
<div class="line"><a name="l00174"></a><span class="lineno"> 174</span>  GPU_FAISS_ASSERT(this->isContiguous());</div>
<div class="line"><a name="l00175"></a><span class="lineno"> 175</span> </div>
<div class="line"><a name="l00176"></a><span class="lineno"> 176</span>  <span class="comment">// Size must be the same (since dimensions are checked and</span></div>
<div class="line"><a name="l00177"></a><span class="lineno"> 177</span>  <span class="comment">// continuity is assumed, we need only check total number of</span></div>
<div class="line"><a name="l00178"></a><span class="lineno"> 178</span>  <span class="comment">// elements</span></div>
<div class="line"><a name="l00179"></a><span class="lineno"> 179</span>  GPU_FAISS_ASSERT(this->numElements() == t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">numElements</a>());</div>
<div class="line"><a name="l00180"></a><span class="lineno"> 180</span> </div>
<div class="line"><a name="l00181"></a><span class="lineno"> 181</span>  <span class="keywordflow">if</span> (t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">numElements</a>() > 0) {</div>
<div class="line"><a name="l00182"></a><span class="lineno"> 182</span>  GPU_FAISS_ASSERT(this->data_);</div>
<div class="line"><a name="l00183"></a><span class="lineno"> 183</span>  GPU_FAISS_ASSERT(t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>());</div>
<div class="line"><a name="l00184"></a><span class="lineno"> 184</span> </div>
<div class="line"><a name="l00185"></a><span class="lineno"> 185</span>  <span class="keywordtype">int</span> ourDev = getDeviceForAddress(this->data_);</div>
<div class="line"><a name="l00186"></a><span class="lineno"> 186</span>  <span class="keywordtype">int</span> tDev = getDeviceForAddress(t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>());</div>
<div class="line"><a name="l00187"></a><span class="lineno"> 187</span> </div>
<div class="line"><a name="l00188"></a><span class="lineno"> 188</span>  <span class="keywordflow">if</span> (tDev == -1) {</div>
<div class="line"><a name="l00189"></a><span class="lineno"> 189</span>  CUDA_VERIFY(cudaMemcpyAsync(t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>(),</div>
<div class="line"><a name="l00190"></a><span class="lineno"> 190</span>  this->data_,</div>
<div class="line"><a name="l00191"></a><span class="lineno"> 191</span>  this->getSizeInBytes(),</div>
<div class="line"><a name="l00192"></a><span class="lineno"> 192</span>  ourDev == -1 ? cudaMemcpyHostToHost :</div>
<div class="line"><a name="l00193"></a><span class="lineno"> 193</span>  cudaMemcpyDeviceToHost,</div>
<div class="line"><a name="l00194"></a><span class="lineno"> 194</span>  stream));</div>
<div class="line"><a name="l00195"></a><span class="lineno"> 195</span>  } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00196"></a><span class="lineno"> 196</span>  CUDA_VERIFY(cudaMemcpyAsync(t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>(),</div>
<div class="line"><a name="l00197"></a><span class="lineno"> 197</span>  this->data_,</div>
<div class="line"><a name="l00198"></a><span class="lineno"> 198</span>  this->getSizeInBytes(),</div>
<div class="line"><a name="l00199"></a><span class="lineno"> 199</span>  ourDev == -1 ? cudaMemcpyHostToDevice :</div>
<div class="line"><a name="l00200"></a><span class="lineno"> 200</span>  cudaMemcpyDeviceToDevice,</div>
<div class="line"><a name="l00201"></a><span class="lineno"> 201</span>  stream));</div>
<div class="line"><a name="l00202"></a><span class="lineno"> 202</span>  }</div>
<div class="line"><a name="l00203"></a><span class="lineno"> 203</span>  }</div>
<div class="line"><a name="l00204"></a><span class="lineno"> 204</span> }</div>
<div class="line"><a name="l00205"></a><span class="lineno"> 205</span> </div>
<div class="line"><a name="l00206"></a><span class="lineno"> 206</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00207"></a><span class="lineno"> 207</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00208"></a><span class="lineno"> 208</span> <span class="keyword">template</span> <<span class="keyword">typename</span> OtherT, <span class="keywordtype">int</span> OtherDim></div>
<div class="line"><a name="l00209"></a><span class="lineno"> 209</span> __host__ __device__ <span class="keywordtype">bool</span></div>
<div class="line"><a name="l00210"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a3067941f8f8f09fc73e2f06243699825"> 210</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a3067941f8f8f09fc73e2f06243699825">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::isSame</a>(</div>
<div class="line"><a name="l00211"></a><span class="lineno"> 211</span>  <span class="keyword">const</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<OtherT, OtherDim, InnerContig, IndexT, PtrTraits></a>& rhs)<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00212"></a><span class="lineno"> 212</span>  <span class="keywordflow">if</span> (Dim != OtherDim) {</div>
<div class="line"><a name="l00213"></a><span class="lineno"> 213</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00214"></a><span class="lineno"> 214</span>  }</div>
<div class="line"><a name="l00215"></a><span class="lineno"> 215</span> </div>
<div class="line"><a name="l00216"></a><span class="lineno"> 216</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
<div class="line"><a name="l00217"></a><span class="lineno"> 217</span>  <span class="keywordflow">if</span> (this->getSize(i) != rhs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(i)) {</div>
<div class="line"><a name="l00218"></a><span class="lineno"> 218</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00219"></a><span class="lineno"> 219</span>  }</div>
<div class="line"><a name="l00220"></a><span class="lineno"> 220</span> </div>
<div class="line"><a name="l00221"></a><span class="lineno"> 221</span>  <span class="keywordflow">if</span> (this->getStride(i) != rhs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0b8bba630f7a1fa217f90b20d298420a">getStride</a>(i)) {</div>
<div class="line"><a name="l00222"></a><span class="lineno"> 222</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00223"></a><span class="lineno"> 223</span>  }</div>
<div class="line"><a name="l00224"></a><span class="lineno"> 224</span>  }</div>
<div class="line"><a name="l00225"></a><span class="lineno"> 225</span> </div>
<div class="line"><a name="l00226"></a><span class="lineno"> 226</span>  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
<div class="line"><a name="l00227"></a><span class="lineno"> 227</span> }</div>
<div class="line"><a name="l00228"></a><span class="lineno"> 228</span> </div>
<div class="line"><a name="l00229"></a><span class="lineno"> 229</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00230"></a><span class="lineno"> 230</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00231"></a><span class="lineno"> 231</span> <span class="keyword">template</span> <<span class="keyword">typename</span> OtherT, <span class="keywordtype">int</span> OtherDim></div>
<div class="line"><a name="l00232"></a><span class="lineno"> 232</span> __host__ __device__ <span class="keywordtype">bool</span></div>
<div class="line"><a name="l00233"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a22c1e45f81f7f9e5427e2eed19f9cd11"> 233</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a22c1e45f81f7f9e5427e2eed19f9cd11">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::isSameSize</a>(</div>
<div class="line"><a name="l00234"></a><span class="lineno"> 234</span>  <span class="keyword">const</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<OtherT, OtherDim, InnerContig, IndexT, PtrTraits></a>& rhs)<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00235"></a><span class="lineno"> 235</span>  <span class="keywordflow">if</span> (Dim != OtherDim) {</div>
<div class="line"><a name="l00236"></a><span class="lineno"> 236</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00237"></a><span class="lineno"> 237</span>  }</div>
<div class="line"><a name="l00238"></a><span class="lineno"> 238</span> </div>
<div class="line"><a name="l00239"></a><span class="lineno"> 239</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
<div class="line"><a name="l00240"></a><span class="lineno"> 240</span>  <span class="keywordflow">if</span> (this->getSize(i) != rhs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(i)) {</div>
<div class="line"><a name="l00241"></a><span class="lineno"> 241</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00242"></a><span class="lineno"> 242</span>  }</div>
<div class="line"><a name="l00243"></a><span class="lineno"> 243</span>  }</div>
<div class="line"><a name="l00244"></a><span class="lineno"> 244</span> </div>
<div class="line"><a name="l00245"></a><span class="lineno"> 245</span>  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
<div class="line"><a name="l00246"></a><span class="lineno"> 246</span> }</div>
<div class="line"><a name="l00247"></a><span class="lineno"> 247</span> </div>
<div class="line"><a name="l00248"></a><span class="lineno"> 248</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00249"></a><span class="lineno"> 249</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00250"></a><span class="lineno"> 250</span> <span class="keyword">template</span> <<span class="keyword">typename</span> U></div>
<div class="line"><a name="l00251"></a><span class="lineno"> 251</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<U, Dim, InnerContig, IndexT, PtrTraits></a></div>
<div class="line"><a name="l00252"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a2894f8fdfab8ec3245364a6f9e8a5259"> 252</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2894f8fdfab8ec3245364a6f9e8a5259">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::cast</a>() {</div>
<div class="line"><a name="l00253"></a><span class="lineno"> 253</span>  static_assert(<span class="keyword">sizeof</span>(U) == <span class="keyword">sizeof</span>(T), <span class="stringliteral">"cast must be to same size object"</span>);</div>
<div class="line"><a name="l00254"></a><span class="lineno"> 254</span> </div>
<div class="line"><a name="l00255"></a><span class="lineno"> 255</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<U, Dim, InnerContig, IndexT, PtrTraits></a>(</div>
<div class="line"><a name="l00256"></a><span class="lineno"> 256</span>  <span class="keyword">reinterpret_cast<</span>U*<span class="keyword">></span>(data_), size_, stride_);</div>
<div class="line"><a name="l00257"></a><span class="lineno"> 257</span> }</div>
<div class="line"><a name="l00258"></a><span class="lineno"> 258</span> </div>
<div class="line"><a name="l00259"></a><span class="lineno"> 259</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00260"></a><span class="lineno"> 260</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00261"></a><span class="lineno"> 261</span> <span class="keyword">template</span> <<span class="keyword">typename</span> U></div>
<div class="line"><a name="l00262"></a><span class="lineno"> 262</span> __host__ __device__ <span class="keyword">const</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<U, Dim, InnerContig, IndexT, PtrTraits></a></div>
<div class="line"><a name="l00263"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a79a16bd4300ca8fdba52932c7c97cce9"> 263</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2894f8fdfab8ec3245364a6f9e8a5259">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::cast</a>()<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00264"></a><span class="lineno"> 264</span>  static_assert(<span class="keyword">sizeof</span>(U) == <span class="keyword">sizeof</span>(T), <span class="stringliteral">"cast must be to same size object"</span>);</div>
<div class="line"><a name="l00265"></a><span class="lineno"> 265</span> </div>
<div class="line"><a name="l00266"></a><span class="lineno"> 266</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<U, Dim, InnerContig, IndexT, PtrTraits></a>(</div>
<div class="line"><a name="l00267"></a><span class="lineno"> 267</span>  <span class="keyword">reinterpret_cast<</span>U*<span class="keyword">></span>(data_), size_, stride_);</div>
<div class="line"><a name="l00268"></a><span class="lineno"> 268</span> }</div>
<div class="line"><a name="l00269"></a><span class="lineno"> 269</span> </div>
<div class="line"><a name="l00270"></a><span class="lineno"> 270</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00271"></a><span class="lineno"> 271</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00272"></a><span class="lineno"> 272</span> <span class="keyword">template</span> <<span class="keyword">typename</span> U></div>
<div class="line"><a name="l00273"></a><span class="lineno"> 273</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<U, Dim, InnerContig, IndexT, PtrTraits></a></div>
<div class="line"><a name="l00274"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a6c9640c365134ccc33cdb2695b016eb3"> 274</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6c9640c365134ccc33cdb2695b016eb3">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::castResize</a>() {</div>
<div class="line"><a name="l00275"></a><span class="lineno"> 275</span>  static_assert(<span class="keyword">sizeof</span>(U) >= <span class="keyword">sizeof</span>(T), <span class="stringliteral">"only handles greater sizes"</span>);</div>
<div class="line"><a name="l00276"></a><span class="lineno"> 276</span>  constexpr <span class="keywordtype">int</span> kMultiple = <span class="keyword">sizeof</span>(U) / <span class="keyword">sizeof</span>(T);</div>
<div class="line"><a name="l00277"></a><span class="lineno"> 277</span> </div>
<div class="line"><a name="l00278"></a><span class="lineno"> 278</span>  GPU_FAISS_ASSERT(canCastResize<U>());</div>
<div class="line"><a name="l00279"></a><span class="lineno"> 279</span> </div>
<div class="line"><a name="l00280"></a><span class="lineno"> 280</span>  IndexT newSize[Dim];</div>
<div class="line"><a name="l00281"></a><span class="lineno"> 281</span>  IndexT newStride[Dim];</div>
<div class="line"><a name="l00282"></a><span class="lineno"> 282</span> </div>
<div class="line"><a name="l00283"></a><span class="lineno"> 283</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim - 1; ++i) {</div>
<div class="line"><a name="l00284"></a><span class="lineno"> 284</span>  newSize[i] = size_[i];</div>
<div class="line"><a name="l00285"></a><span class="lineno"> 285</span>  newStride[i] = stride_[i] / kMultiple;</div>
<div class="line"><a name="l00286"></a><span class="lineno"> 286</span>  }</div>
<div class="line"><a name="l00287"></a><span class="lineno"> 287</span> </div>
<div class="line"><a name="l00288"></a><span class="lineno"> 288</span>  newStride[Dim - 1] = 1; <span class="comment">// this is the same as the old stride</span></div>
<div class="line"><a name="l00289"></a><span class="lineno"> 289</span>  newSize[Dim - 1] = size_[Dim - 1] / kMultiple;</div>
<div class="line"><a name="l00290"></a><span class="lineno"> 290</span> </div>
<div class="line"><a name="l00291"></a><span class="lineno"> 291</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<U, Dim, InnerContig, IndexT, PtrTraits></a>(</div>
<div class="line"><a name="l00292"></a><span class="lineno"> 292</span>  <span class="keyword">reinterpret_cast<</span>U*<span class="keyword">></span>(data_), newSize, newStride);</div>
<div class="line"><a name="l00293"></a><span class="lineno"> 293</span> }</div>
<div class="line"><a name="l00294"></a><span class="lineno"> 294</span> </div>
<div class="line"><a name="l00295"></a><span class="lineno"> 295</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00296"></a><span class="lineno"> 296</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00297"></a><span class="lineno"> 297</span> <span class="keyword">template</span> <<span class="keyword">typename</span> U></div>
<div class="line"><a name="l00298"></a><span class="lineno"> 298</span> __host__ __device__ <span class="keyword">const</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<U, Dim, InnerContig, IndexT, PtrTraits></a></div>
<div class="line"><a name="l00299"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#ae06338d9b19c62452c2111682447f863"> 299</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6c9640c365134ccc33cdb2695b016eb3">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::castResize</a>()<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00300"></a><span class="lineno"> 300</span>  <span class="keywordflow">return</span> <span class="keyword">const_cast<</span><a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a>*<span class="keyword">></span>(<span class="keyword">this</span>)-></div>
<div class="line"><a name="l00301"></a><span class="lineno"> 301</span>  castResize<U>();</div>
<div class="line"><a name="l00302"></a><span class="lineno"> 302</span> }</div>
<div class="line"><a name="l00303"></a><span class="lineno"> 303</span> </div>
<div class="line"><a name="l00304"></a><span class="lineno"> 304</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00305"></a><span class="lineno"> 305</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00306"></a><span class="lineno"> 306</span> <span class="keyword">template</span> <<span class="keyword">typename</span> U></div>
<div class="line"><a name="l00307"></a><span class="lineno"> 307</span> __host__ __device__ <span class="keywordtype">bool</span></div>
<div class="line"><a name="l00308"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a7fbbf51f8ef6bea9cc863a86e20d994e"> 308</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a7fbbf51f8ef6bea9cc863a86e20d994e">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::canCastResize</a>()<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00309"></a><span class="lineno"> 309</span>  static_assert(<span class="keyword">sizeof</span>(U) >= <span class="keyword">sizeof</span>(T), <span class="stringliteral">"only handles greater sizes"</span>);</div>
<div class="line"><a name="l00310"></a><span class="lineno"> 310</span>  constexpr <span class="keywordtype">int</span> kMultiple = <span class="keyword">sizeof</span>(U) / <span class="keyword">sizeof</span>(T);</div>
<div class="line"><a name="l00311"></a><span class="lineno"> 311</span> </div>
<div class="line"><a name="l00312"></a><span class="lineno"> 312</span>  <span class="comment">// Ensure that the base pointer is sizeof(U) aligned</span></div>
<div class="line"><a name="l00313"></a><span class="lineno"> 313</span>  <span class="keywordflow">if</span> (((uintptr_t) data_) % <span class="keyword">sizeof</span>(U) != 0) {</div>
<div class="line"><a name="l00314"></a><span class="lineno"> 314</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00315"></a><span class="lineno"> 315</span>  }</div>
<div class="line"><a name="l00316"></a><span class="lineno"> 316</span> </div>
<div class="line"><a name="l00317"></a><span class="lineno"> 317</span>  <span class="comment">// Check all outer strides</span></div>
<div class="line"><a name="l00318"></a><span class="lineno"> 318</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim - 1; ++i) {</div>
<div class="line"><a name="l00319"></a><span class="lineno"> 319</span>  <span class="keywordflow">if</span> (stride_[i] % kMultiple != 0) {</div>
<div class="line"><a name="l00320"></a><span class="lineno"> 320</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00321"></a><span class="lineno"> 321</span>  }</div>
<div class="line"><a name="l00322"></a><span class="lineno"> 322</span>  }</div>
<div class="line"><a name="l00323"></a><span class="lineno"> 323</span> </div>
<div class="line"><a name="l00324"></a><span class="lineno"> 324</span>  <span class="comment">// Check inner size</span></div>
<div class="line"><a name="l00325"></a><span class="lineno"> 325</span>  <span class="keywordflow">if</span> (size_[Dim - 1] % kMultiple != 0) {</div>
<div class="line"><a name="l00326"></a><span class="lineno"> 326</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00327"></a><span class="lineno"> 327</span>  }</div>
<div class="line"><a name="l00328"></a><span class="lineno"> 328</span> </div>
<div class="line"><a name="l00329"></a><span class="lineno"> 329</span>  <span class="keywordflow">if</span> (stride_[Dim - 1] != 1) {</div>
<div class="line"><a name="l00330"></a><span class="lineno"> 330</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00331"></a><span class="lineno"> 331</span>  }</div>
<div class="line"><a name="l00332"></a><span class="lineno"> 332</span> </div>
<div class="line"><a name="l00333"></a><span class="lineno"> 333</span>  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
<div class="line"><a name="l00334"></a><span class="lineno"> 334</span> }</div>
<div class="line"><a name="l00335"></a><span class="lineno"> 335</span> </div>
<div class="line"><a name="l00336"></a><span class="lineno"> 336</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00337"></a><span class="lineno"> 337</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00338"></a><span class="lineno"> 338</span> <span class="keyword">template</span> <<span class="keyword">typename</span> NewIndexT></div>
<div class="line"><a name="l00339"></a><span class="lineno"> 339</span> __host__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, NewIndexT, PtrTraits></a></div>
<div class="line"><a name="l00340"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a9f0c817e9751fe02926c2346a97f0350"> 340</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a9f0c817e9751fe02926c2346a97f0350">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::castIndexType</a>()<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00341"></a><span class="lineno"> 341</span>  <span class="keywordflow">if</span> (<span class="keyword">sizeof</span>(NewIndexT) < <span class="keyword">sizeof</span>(IndexT)) {</div>
<div class="line"><a name="l00342"></a><span class="lineno"> 342</span>  GPU_FAISS_ASSERT(this->canUseIndexType<NewIndexT>());</div>
<div class="line"><a name="l00343"></a><span class="lineno"> 343</span>  }</div>
<div class="line"><a name="l00344"></a><span class="lineno"> 344</span> </div>
<div class="line"><a name="l00345"></a><span class="lineno"> 345</span>  NewIndexT newSize[Dim];</div>
<div class="line"><a name="l00346"></a><span class="lineno"> 346</span>  NewIndexT newStride[Dim];</div>
<div class="line"><a name="l00347"></a><span class="lineno"> 347</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
<div class="line"><a name="l00348"></a><span class="lineno"> 348</span>  newSize[i] = (NewIndexT) size_[i];</div>
<div class="line"><a name="l00349"></a><span class="lineno"> 349</span>  newStride[i] = (NewIndexT) stride_[i];</div>
<div class="line"><a name="l00350"></a><span class="lineno"> 350</span>  }</div>
<div class="line"><a name="l00351"></a><span class="lineno"> 351</span> </div>
<div class="line"><a name="l00352"></a><span class="lineno"> 352</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, NewIndexT, PtrTraits></a>(</div>
<div class="line"><a name="l00353"></a><span class="lineno"> 353</span>  data_, newSize, newStride);</div>
<div class="line"><a name="l00354"></a><span class="lineno"> 354</span> }</div>
<div class="line"><a name="l00355"></a><span class="lineno"> 355</span> </div>
<div class="line"><a name="l00356"></a><span class="lineno"> 356</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00357"></a><span class="lineno"> 357</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00358"></a><span class="lineno"> 358</span> <span class="keyword">template</span> <<span class="keyword">typename</span> NewIndexT></div>
<div class="line"><a name="l00359"></a><span class="lineno"> 359</span> __host__ <span class="keywordtype">bool</span></div>
<div class="line"><a name="l00360"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a2ac9dc9fa8d81f2651a1be486c14ba62"> 360</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2ac9dc9fa8d81f2651a1be486c14ba62">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::canUseIndexType</a>()<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00361"></a><span class="lineno"> 361</span>  static_assert(<span class="keyword">sizeof</span>(<span class="keywordtype">size_t</span>) >= <span class="keyword">sizeof</span>(IndexT),</div>
<div class="line"><a name="l00362"></a><span class="lineno"> 362</span>  <span class="stringliteral">"index size too large"</span>);</div>
<div class="line"><a name="l00363"></a><span class="lineno"> 363</span>  static_assert(<span class="keyword">sizeof</span>(<span class="keywordtype">size_t</span>) >= <span class="keyword">sizeof</span>(NewIndexT),</div>
<div class="line"><a name="l00364"></a><span class="lineno"> 364</span>  <span class="stringliteral">"new index size too large"</span>);</div>
<div class="line"><a name="l00365"></a><span class="lineno"> 365</span> </div>
<div class="line"><a name="l00366"></a><span class="lineno"> 366</span>  <span class="comment">// Find maximum offset that can be calculated</span></div>
<div class="line"><a name="l00367"></a><span class="lineno"> 367</span>  <span class="comment">// FIXME: maybe also consider offset in bytes? multiply by sizeof(T)?</span></div>
<div class="line"><a name="l00368"></a><span class="lineno"> 368</span>  <span class="keywordtype">size_t</span> maxOffset = 0;</div>
<div class="line"><a name="l00369"></a><span class="lineno"> 369</span> </div>
<div class="line"><a name="l00370"></a><span class="lineno"> 370</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
<div class="line"><a name="l00371"></a><span class="lineno"> 371</span>  <span class="keywordtype">size_t</span> curMaxOffset = (size_t) size_[i] * (<span class="keywordtype">size_t</span>) stride_[i];</div>
<div class="line"><a name="l00372"></a><span class="lineno"> 372</span>  <span class="keywordflow">if</span> (curMaxOffset > maxOffset) {</div>
<div class="line"><a name="l00373"></a><span class="lineno"> 373</span>  maxOffset = curMaxOffset;</div>
<div class="line"><a name="l00374"></a><span class="lineno"> 374</span>  }</div>
<div class="line"><a name="l00375"></a><span class="lineno"> 375</span>  }</div>
<div class="line"><a name="l00376"></a><span class="lineno"> 376</span> </div>
<div class="line"><a name="l00377"></a><span class="lineno"> 377</span>  <span class="keywordflow">if</span> (maxOffset > (<span class="keywordtype">size_t</span>) std::numeric_limits<NewIndexT>::max()) {</div>
<div class="line"><a name="l00378"></a><span class="lineno"> 378</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00379"></a><span class="lineno"> 379</span>  }</div>
<div class="line"><a name="l00380"></a><span class="lineno"> 380</span> </div>
<div class="line"><a name="l00381"></a><span class="lineno"> 381</span>  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
<div class="line"><a name="l00382"></a><span class="lineno"> 382</span> }</div>
<div class="line"><a name="l00383"></a><span class="lineno"> 383</span> </div>
<div class="line"><a name="l00384"></a><span class="lineno"> 384</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00385"></a><span class="lineno"> 385</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00386"></a><span class="lineno"> 386</span> __host__ __device__ <span class="keywordtype">size_t</span></div>
<div class="line"><a name="l00387"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f"> 387</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::numElements</a>()<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00388"></a><span class="lineno"> 388</span>  <span class="keywordtype">size_t</span> size = (size_t) getSize(0);</div>
<div class="line"><a name="l00389"></a><span class="lineno"> 389</span> </div>
<div class="line"><a name="l00390"></a><span class="lineno"> 390</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 1; i < Dim; ++i) {</div>
<div class="line"><a name="l00391"></a><span class="lineno"> 391</span>  size *= (size_t) getSize(i);</div>
<div class="line"><a name="l00392"></a><span class="lineno"> 392</span>  }</div>
<div class="line"><a name="l00393"></a><span class="lineno"> 393</span> </div>
<div class="line"><a name="l00394"></a><span class="lineno"> 394</span>  <span class="keywordflow">return</span> size;</div>
<div class="line"><a name="l00395"></a><span class="lineno"> 395</span> }</div>
<div class="line"><a name="l00396"></a><span class="lineno"> 396</span> </div>
<div class="line"><a name="l00397"></a><span class="lineno"> 397</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00398"></a><span class="lineno"> 398</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00399"></a><span class="lineno"> 399</span> __host__ __device__ <span class="keywordtype">bool</span></div>
<div class="line"><a name="l00400"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a09019c54911db891c9321fd3b34509c2"> 400</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a09019c54911db891c9321fd3b34509c2">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::isContiguous</a>()<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00401"></a><span class="lineno"> 401</span>  <span class="keywordtype">long</span> prevSize = 1;</div>
<div class="line"><a name="l00402"></a><span class="lineno"> 402</span> </div>
<div class="line"><a name="l00403"></a><span class="lineno"> 403</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = Dim - 1; i >= 0; --i) {</div>
<div class="line"><a name="l00404"></a><span class="lineno"> 404</span>  <span class="keywordflow">if</span> (getSize(i) != (IndexT) 1) {</div>
<div class="line"><a name="l00405"></a><span class="lineno"> 405</span>  <span class="keywordflow">if</span> (getStride(i) == prevSize) {</div>
<div class="line"><a name="l00406"></a><span class="lineno"> 406</span>  prevSize *= getSize(i);</div>
<div class="line"><a name="l00407"></a><span class="lineno"> 407</span>  } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00408"></a><span class="lineno"> 408</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00409"></a><span class="lineno"> 409</span>  }</div>
<div class="line"><a name="l00410"></a><span class="lineno"> 410</span>  }</div>
<div class="line"><a name="l00411"></a><span class="lineno"> 411</span>  }</div>
<div class="line"><a name="l00412"></a><span class="lineno"> 412</span> </div>
<div class="line"><a name="l00413"></a><span class="lineno"> 413</span>  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
<div class="line"><a name="l00414"></a><span class="lineno"> 414</span> }</div>
<div class="line"><a name="l00415"></a><span class="lineno"> 415</span> </div>
<div class="line"><a name="l00416"></a><span class="lineno"> 416</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00417"></a><span class="lineno"> 417</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00418"></a><span class="lineno"> 418</span> __host__ __device__ <span class="keywordtype">bool</span></div>
<div class="line"><a name="l00419"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a663e3829c395372acdc8d2e71c0bdabe"> 419</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::isConsistentlySized</a>(<span class="keywordtype">int</span> i)<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00420"></a><span class="lineno"> 420</span>  <span class="keywordflow">if</span> (i == 0 && getStride(i) > 0 && getSize(i) > 0) {</div>
<div class="line"><a name="l00421"></a><span class="lineno"> 421</span>  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
<div class="line"><a name="l00422"></a><span class="lineno"> 422</span>  } <span class="keywordflow">else</span> <span class="keywordflow">if</span> ((i > 0) && (i < Dim) && (getStride(i) > 0) &&</div>
<div class="line"><a name="l00423"></a><span class="lineno"> 423</span>  ((getStride(i - 1) / getStride(i)) >= getSize(i))) {</div>
<div class="line"><a name="l00424"></a><span class="lineno"> 424</span>  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
<div class="line"><a name="l00425"></a><span class="lineno"> 425</span>  }</div>
<div class="line"><a name="l00426"></a><span class="lineno"> 426</span> </div>
<div class="line"><a name="l00427"></a><span class="lineno"> 427</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00428"></a><span class="lineno"> 428</span> }</div>
<div class="line"><a name="l00429"></a><span class="lineno"> 429</span> </div>
<div class="line"><a name="l00430"></a><span class="lineno"> 430</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00431"></a><span class="lineno"> 431</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00432"></a><span class="lineno"> 432</span> __host__ __device__ <span class="keywordtype">bool</span></div>
<div class="line"><a name="l00433"></a><span class="lineno"> 433</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::isConsistentlySized</a>()<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00434"></a><span class="lineno"> 434</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
<div class="line"><a name="l00435"></a><span class="lineno"> 435</span>  <span class="keywordflow">if</span> (!isConsistentlySized(i)) {</div>
<div class="line"><a name="l00436"></a><span class="lineno"> 436</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00437"></a><span class="lineno"> 437</span>  }</div>
<div class="line"><a name="l00438"></a><span class="lineno"> 438</span>  }</div>
<div class="line"><a name="l00439"></a><span class="lineno"> 439</span> </div>
<div class="line"><a name="l00440"></a><span class="lineno"> 440</span>  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
<div class="line"><a name="l00441"></a><span class="lineno"> 441</span> }</div>
<div class="line"><a name="l00442"></a><span class="lineno"> 442</span> </div>
<div class="line"><a name="l00443"></a><span class="lineno"> 443</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00444"></a><span class="lineno"> 444</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00445"></a><span class="lineno"> 445</span> __host__ __device__ <span class="keywordtype">bool</span></div>
<div class="line"><a name="l00446"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a3f4e3c6afdf4a03308756b6ae6462c38"> 446</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a3f4e3c6afdf4a03308756b6ae6462c38">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::isContiguousDim</a>(<span class="keywordtype">int</span> i)<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00447"></a><span class="lineno"> 447</span>  <span class="keywordflow">return</span> (i == Dim - 1) || <span class="comment">// just in case</span></div>
<div class="line"><a name="l00448"></a><span class="lineno"> 448</span>  ((i < Dim - 1) &&</div>
<div class="line"><a name="l00449"></a><span class="lineno"> 449</span>  ((getStride(i) / getStride(i + 1)) == getSize(i + 1)));</div>
<div class="line"><a name="l00450"></a><span class="lineno"> 450</span> }</div>
<div class="line"><a name="l00451"></a><span class="lineno"> 451</span> </div>
<div class="line"><a name="l00452"></a><span class="lineno"> 452</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00453"></a><span class="lineno"> 453</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00454"></a><span class="lineno"> 454</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a></div>
<div class="line"><a name="l00455"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a82a3484a6458e3e95bb91d320f2c6731"> 455</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a82a3484a6458e3e95bb91d320f2c6731">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::transpose</a>(<span class="keywordtype">int</span> dim1,</div>
<div class="line"><a name="l00456"></a><span class="lineno"> 456</span>  <span class="keywordtype">int</span> dim2)<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00457"></a><span class="lineno"> 457</span>  GPU_FAISS_ASSERT(dim1 >= 0 && dim1 < Dim);</div>
<div class="line"><a name="l00458"></a><span class="lineno"> 458</span>  GPU_FAISS_ASSERT(dim1 >= 0 && dim2 < Dim);</div>
<div class="line"><a name="l00459"></a><span class="lineno"> 459</span> </div>
<div class="line"><a name="l00460"></a><span class="lineno"> 460</span>  <span class="comment">// If a tensor is innermost contiguous, one cannot transpose the innermost</span></div>
<div class="line"><a name="l00461"></a><span class="lineno"> 461</span>  <span class="comment">// dimension</span></div>
<div class="line"><a name="l00462"></a><span class="lineno"> 462</span>  <span class="keywordflow">if</span> (InnerContig) {</div>
<div class="line"><a name="l00463"></a><span class="lineno"> 463</span>  GPU_FAISS_ASSERT(dim1 != Dim - 1 && dim2 != Dim - 1);</div>
<div class="line"><a name="l00464"></a><span class="lineno"> 464</span>  }</div>
<div class="line"><a name="l00465"></a><span class="lineno"> 465</span> </div>
<div class="line"><a name="l00466"></a><span class="lineno"> 466</span>  IndexT newSize[Dim];</div>
<div class="line"><a name="l00467"></a><span class="lineno"> 467</span>  IndexT newStride[Dim];</div>
<div class="line"><a name="l00468"></a><span class="lineno"> 468</span> </div>
<div class="line"><a name="l00469"></a><span class="lineno"> 469</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
<div class="line"><a name="l00470"></a><span class="lineno"> 470</span>  newSize[i] = size_[i];</div>
<div class="line"><a name="l00471"></a><span class="lineno"> 471</span>  newStride[i] = stride_[i];</div>
<div class="line"><a name="l00472"></a><span class="lineno"> 472</span>  }</div>
<div class="line"><a name="l00473"></a><span class="lineno"> 473</span> </div>
<div class="line"><a name="l00474"></a><span class="lineno"> 474</span>  IndexT tmp = newSize[dim1];</div>
<div class="line"><a name="l00475"></a><span class="lineno"> 475</span>  newSize[dim1] = newSize[dim2];</div>
<div class="line"><a name="l00476"></a><span class="lineno"> 476</span>  newSize[dim2] = tmp;</div>
<div class="line"><a name="l00477"></a><span class="lineno"> 477</span> </div>
<div class="line"><a name="l00478"></a><span class="lineno"> 478</span>  tmp = newStride[dim1];</div>
<div class="line"><a name="l00479"></a><span class="lineno"> 479</span>  newStride[dim1] = newStride[dim2];</div>
<div class="line"><a name="l00480"></a><span class="lineno"> 480</span>  newStride[dim2] = tmp;</div>
<div class="line"><a name="l00481"></a><span class="lineno"> 481</span> </div>
<div class="line"><a name="l00482"></a><span class="lineno"> 482</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a>(data_, newSize, newStride);</div>
<div class="line"><a name="l00483"></a><span class="lineno"> 483</span> }</div>
<div class="line"><a name="l00484"></a><span class="lineno"> 484</span> </div>
<div class="line"><a name="l00485"></a><span class="lineno"> 485</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00486"></a><span class="lineno"> 486</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00487"></a><span class="lineno"> 487</span> <span class="keyword">template</span> <<span class="keywordtype">int</span> NewDim></div>
<div class="line"><a name="l00488"></a><span class="lineno"> 488</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, InnerContig, IndexT, PtrTraits></a></div>
<div class="line"><a name="l00489"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a309eb97e9c6dbfdecf383343c072d38c"> 489</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a309eb97e9c6dbfdecf383343c072d38c">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::upcastOuter</a>() {</div>
<div class="line"><a name="l00490"></a><span class="lineno"> 490</span>  <span class="comment">// Can only create tensors of greater dimension</span></div>
<div class="line"><a name="l00491"></a><span class="lineno"> 491</span>  static_assert(NewDim > Dim, <span class="stringliteral">"Can only upcast to greater dim"</span>);</div>
<div class="line"><a name="l00492"></a><span class="lineno"> 492</span> </div>
<div class="line"><a name="l00493"></a><span class="lineno"> 493</span>  IndexT newSize[NewDim];</div>
<div class="line"><a name="l00494"></a><span class="lineno"> 494</span>  IndexT newStride[NewDim];</div>
<div class="line"><a name="l00495"></a><span class="lineno"> 495</span> </div>
<div class="line"><a name="l00496"></a><span class="lineno"> 496</span>  <span class="keywordtype">int</span> shift = NewDim - Dim;</div>
<div class="line"><a name="l00497"></a><span class="lineno"> 497</span> </div>
<div class="line"><a name="l00498"></a><span class="lineno"> 498</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < NewDim; ++i) {</div>
<div class="line"><a name="l00499"></a><span class="lineno"> 499</span>  <span class="keywordflow">if</span> (i < shift) {</div>
<div class="line"><a name="l00500"></a><span class="lineno"> 500</span>  <span class="comment">// These are the extended dimensions</span></div>
<div class="line"><a name="l00501"></a><span class="lineno"> 501</span>  newSize[i] = (IndexT) 1;</div>
<div class="line"><a name="l00502"></a><span class="lineno"> 502</span>  newStride[i] = size_[0] * stride_[0];</div>
<div class="line"><a name="l00503"></a><span class="lineno"> 503</span>  } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00504"></a><span class="lineno"> 504</span>  <span class="comment">// Shift the remaining dimensions</span></div>
<div class="line"><a name="l00505"></a><span class="lineno"> 505</span>  newSize[i] = size_[i - shift];</div>
<div class="line"><a name="l00506"></a><span class="lineno"> 506</span>  newStride[i] = stride_[i - shift];</div>
<div class="line"><a name="l00507"></a><span class="lineno"> 507</span>  }</div>
<div class="line"><a name="l00508"></a><span class="lineno"> 508</span>  }</div>
<div class="line"><a name="l00509"></a><span class="lineno"> 509</span> </div>
<div class="line"><a name="l00510"></a><span class="lineno"> 510</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, InnerContig, IndexT, PtrTraits></a>(</div>
<div class="line"><a name="l00511"></a><span class="lineno"> 511</span>  data_, newSize, newStride);</div>
<div class="line"><a name="l00512"></a><span class="lineno"> 512</span> }</div>
<div class="line"><a name="l00513"></a><span class="lineno"> 513</span> </div>
<div class="line"><a name="l00514"></a><span class="lineno"> 514</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00515"></a><span class="lineno"> 515</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00516"></a><span class="lineno"> 516</span> <span class="keyword">template</span> <<span class="keywordtype">int</span> NewDim></div>
<div class="line"><a name="l00517"></a><span class="lineno"> 517</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, InnerContig, IndexT, PtrTraits></a></div>
<div class="line"><a name="l00518"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#aee5cf46d16344e2a055cf63adb07d24a"> 518</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#aee5cf46d16344e2a055cf63adb07d24a">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::upcastInner</a>() {</div>
<div class="line"><a name="l00519"></a><span class="lineno"> 519</span>  <span class="comment">// Can only create tensors of greater dimension</span></div>
<div class="line"><a name="l00520"></a><span class="lineno"> 520</span>  static_assert(NewDim > Dim, <span class="stringliteral">"Can only upcast to greater dim"</span>);</div>
<div class="line"><a name="l00521"></a><span class="lineno"> 521</span> </div>
<div class="line"><a name="l00522"></a><span class="lineno"> 522</span>  IndexT newSize[NewDim];</div>
<div class="line"><a name="l00523"></a><span class="lineno"> 523</span>  IndexT newStride[NewDim];</div>
<div class="line"><a name="l00524"></a><span class="lineno"> 524</span> </div>
<div class="line"><a name="l00525"></a><span class="lineno"> 525</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < NewDim; ++i) {</div>
<div class="line"><a name="l00526"></a><span class="lineno"> 526</span>  <span class="keywordflow">if</span> (i < Dim) {</div>
<div class="line"><a name="l00527"></a><span class="lineno"> 527</span>  <span class="comment">// Existing dimensions get copied over</span></div>
<div class="line"><a name="l00528"></a><span class="lineno"> 528</span>  newSize[i] = size_[i];</div>
<div class="line"><a name="l00529"></a><span class="lineno"> 529</span>  newStride[i] = stride_[i];</div>
<div class="line"><a name="l00530"></a><span class="lineno"> 530</span>  } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00531"></a><span class="lineno"> 531</span>  <span class="comment">// Extended dimensions</span></div>
<div class="line"><a name="l00532"></a><span class="lineno"> 532</span>  newSize[i] = (IndexT) 1;</div>
<div class="line"><a name="l00533"></a><span class="lineno"> 533</span>  newStride[i] = (IndexT) 1;</div>
<div class="line"><a name="l00534"></a><span class="lineno"> 534</span>  }</div>
<div class="line"><a name="l00535"></a><span class="lineno"> 535</span>  }</div>
<div class="line"><a name="l00536"></a><span class="lineno"> 536</span> </div>
<div class="line"><a name="l00537"></a><span class="lineno"> 537</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, InnerContig, IndexT, PtrTraits></a>(</div>
<div class="line"><a name="l00538"></a><span class="lineno"> 538</span>  data_, newSize, newStride);</div>
<div class="line"><a name="l00539"></a><span class="lineno"> 539</span> }</div>
<div class="line"><a name="l00540"></a><span class="lineno"> 540</span> </div>
<div class="line"><a name="l00541"></a><span class="lineno"> 541</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00542"></a><span class="lineno"> 542</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00543"></a><span class="lineno"> 543</span> <span class="keyword">template</span> <<span class="keywordtype">int</span> NewDim></div>
<div class="line"><a name="l00544"></a><span class="lineno"> 544</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, InnerContig, IndexT, PtrTraits></a></div>
<div class="line"><a name="l00545"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a2185b0c1c2c06cc3a4dab6a88eb6d001"> 545</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2185b0c1c2c06cc3a4dab6a88eb6d001">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::downcastOuter</a>() {</div>
<div class="line"><a name="l00546"></a><span class="lineno"> 546</span>  <span class="comment">// Can only create tensors of lesser dimension</span></div>
<div class="line"><a name="l00547"></a><span class="lineno"> 547</span>  static_assert(NewDim < Dim, <span class="stringliteral">"Can only downcast to lesser dim"</span>);</div>
<div class="line"><a name="l00548"></a><span class="lineno"> 548</span> </div>
<div class="line"><a name="l00549"></a><span class="lineno"> 549</span>  <span class="comment">// We can't downcast non-contiguous tensors, since it leaves</span></div>
<div class="line"><a name="l00550"></a><span class="lineno"> 550</span>  <span class="comment">// garbage data in the tensor. The tensor needs to be contiguous</span></div>
<div class="line"><a name="l00551"></a><span class="lineno"> 551</span>  <span class="comment">// in all of the dimensions we are collapsing (no padding in</span></div>
<div class="line"><a name="l00552"></a><span class="lineno"> 552</span>  <span class="comment">// them).</span></div>
<div class="line"><a name="l00553"></a><span class="lineno"> 553</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim - NewDim; ++i) {</div>
<div class="line"><a name="l00554"></a><span class="lineno"> 554</span>  <span class="keywordtype">bool</span> cont = isContiguousDim(i);</div>
<div class="line"><a name="l00555"></a><span class="lineno"> 555</span>  GPU_FAISS_ASSERT(cont);</div>
<div class="line"><a name="l00556"></a><span class="lineno"> 556</span>  }</div>
<div class="line"><a name="l00557"></a><span class="lineno"> 557</span> </div>
<div class="line"><a name="l00558"></a><span class="lineno"> 558</span>  IndexT newSize[NewDim];</div>
<div class="line"><a name="l00559"></a><span class="lineno"> 559</span>  IndexT newStride[NewDim];</div>
<div class="line"><a name="l00560"></a><span class="lineno"> 560</span> </div>
<div class="line"><a name="l00561"></a><span class="lineno"> 561</span>  <span class="keywordtype">int</span> ignoredDims = Dim - NewDim;</div>
<div class="line"><a name="l00562"></a><span class="lineno"> 562</span>  IndexT collapsedSize = 1;</div>
<div class="line"><a name="l00563"></a><span class="lineno"> 563</span> </div>
<div class="line"><a name="l00564"></a><span class="lineno"> 564</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
<div class="line"><a name="l00565"></a><span class="lineno"> 565</span>  <span class="keywordflow">if</span> (i < ignoredDims) {</div>
<div class="line"><a name="l00566"></a><span class="lineno"> 566</span>  <span class="comment">// Collapse these dimensions</span></div>
<div class="line"><a name="l00567"></a><span class="lineno"> 567</span>  collapsedSize *= getSize(i);</div>
<div class="line"><a name="l00568"></a><span class="lineno"> 568</span>  } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00569"></a><span class="lineno"> 569</span>  <span class="comment">// Non-collapsed dimensions</span></div>
<div class="line"><a name="l00570"></a><span class="lineno"> 570</span>  <span class="keywordflow">if</span> (i == ignoredDims) {</div>
<div class="line"><a name="l00571"></a><span class="lineno"> 571</span>  <span class="comment">// This is the first non-collapsed dimension</span></div>
<div class="line"><a name="l00572"></a><span class="lineno"> 572</span>  newSize[i - ignoredDims] = collapsedSize * getSize(i);</div>
<div class="line"><a name="l00573"></a><span class="lineno"> 573</span>  } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00574"></a><span class="lineno"> 574</span>  <span class="comment">// Subsequent non-collapsed dimensions</span></div>
<div class="line"><a name="l00575"></a><span class="lineno"> 575</span>  newSize[i - ignoredDims] = getSize(i);</div>
<div class="line"><a name="l00576"></a><span class="lineno"> 576</span>  }</div>
<div class="line"><a name="l00577"></a><span class="lineno"> 577</span> </div>
<div class="line"><a name="l00578"></a><span class="lineno"> 578</span>  newStride[i - ignoredDims] = getStride(i);</div>
<div class="line"><a name="l00579"></a><span class="lineno"> 579</span>  }</div>
<div class="line"><a name="l00580"></a><span class="lineno"> 580</span>  }</div>
<div class="line"><a name="l00581"></a><span class="lineno"> 581</span> </div>
<div class="line"><a name="l00582"></a><span class="lineno"> 582</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, InnerContig, IndexT, PtrTraits></a>(</div>
<div class="line"><a name="l00583"></a><span class="lineno"> 583</span>  data_, newSize, newStride);</div>
<div class="line"><a name="l00584"></a><span class="lineno"> 584</span> }</div>
<div class="line"><a name="l00585"></a><span class="lineno"> 585</span> </div>
<div class="line"><a name="l00586"></a><span class="lineno"> 586</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00587"></a><span class="lineno"> 587</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00588"></a><span class="lineno"> 588</span> <span class="keyword">template</span> <<span class="keywordtype">int</span> NewDim></div>
<div class="line"><a name="l00589"></a><span class="lineno"> 589</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, InnerContig, IndexT, PtrTraits></a></div>
<div class="line"><a name="l00590"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a6a43125c6f429f28161d59f19eb8e5c5"> 590</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6a43125c6f429f28161d59f19eb8e5c5">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::downcastInner</a>() {</div>
<div class="line"><a name="l00591"></a><span class="lineno"> 591</span>  <span class="comment">// Can only create tensors of lesser dimension</span></div>
<div class="line"><a name="l00592"></a><span class="lineno"> 592</span>  static_assert(NewDim < Dim, <span class="stringliteral">"Can only downcast to lesser dim"</span>);</div>
<div class="line"><a name="l00593"></a><span class="lineno"> 593</span> </div>
<div class="line"><a name="l00594"></a><span class="lineno"> 594</span>  <span class="comment">// We can't downcast non-contiguous tensors, since it leaves</span></div>
<div class="line"><a name="l00595"></a><span class="lineno"> 595</span>  <span class="comment">// garbage data in the tensor. The tensor needs to be contiguous</span></div>
<div class="line"><a name="l00596"></a><span class="lineno"> 596</span>  <span class="comment">// in all of the dimensions we are collapsing (no padding in</span></div>
<div class="line"><a name="l00597"></a><span class="lineno"> 597</span>  <span class="comment">// them).</span></div>
<div class="line"><a name="l00598"></a><span class="lineno"> 598</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = NewDim; i < Dim; ++i) {</div>
<div class="line"><a name="l00599"></a><span class="lineno"> 599</span>  GPU_FAISS_ASSERT(isContiguousDim(i));</div>
<div class="line"><a name="l00600"></a><span class="lineno"> 600</span>  }</div>
<div class="line"><a name="l00601"></a><span class="lineno"> 601</span> </div>
<div class="line"><a name="l00602"></a><span class="lineno"> 602</span>  IndexT newSize[NewDim];</div>
<div class="line"><a name="l00603"></a><span class="lineno"> 603</span>  IndexT newStride[NewDim];</div>
<div class="line"><a name="l00604"></a><span class="lineno"> 604</span> </div>
<div class="line"><a name="l00605"></a><span class="lineno"> 605</span>  IndexT collapsedSize = 1;</div>
<div class="line"><a name="l00606"></a><span class="lineno"> 606</span> </div>
<div class="line"><a name="l00607"></a><span class="lineno"> 607</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = Dim - 1; i >= 0; --i) {</div>
<div class="line"><a name="l00608"></a><span class="lineno"> 608</span>  <span class="keywordflow">if</span> (i >= NewDim) {</div>
<div class="line"><a name="l00609"></a><span class="lineno"> 609</span>  <span class="comment">// Collapse these dimensions</span></div>
<div class="line"><a name="l00610"></a><span class="lineno"> 610</span>  collapsedSize *= getSize(i);</div>
<div class="line"><a name="l00611"></a><span class="lineno"> 611</span>  } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00612"></a><span class="lineno"> 612</span>  <span class="comment">// Non-collapsed dimensions</span></div>
<div class="line"><a name="l00613"></a><span class="lineno"> 613</span>  <span class="keywordflow">if</span> (i == NewDim - 1) {</div>
<div class="line"><a name="l00614"></a><span class="lineno"> 614</span>  <span class="comment">// This is the first non-collapsed dimension</span></div>
<div class="line"><a name="l00615"></a><span class="lineno"> 615</span>  newSize[i] = collapsedSize * getSize(i);</div>
<div class="line"><a name="l00616"></a><span class="lineno"> 616</span>  newStride[i] = getStride(Dim - 1);</div>
<div class="line"><a name="l00617"></a><span class="lineno"> 617</span>  } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00618"></a><span class="lineno"> 618</span>  <span class="comment">// Subsequent non-collapsed dimensions</span></div>
<div class="line"><a name="l00619"></a><span class="lineno"> 619</span>  newSize[i] = getSize(i);</div>
<div class="line"><a name="l00620"></a><span class="lineno"> 620</span>  newStride[i] = getStride(i);</div>
<div class="line"><a name="l00621"></a><span class="lineno"> 621</span>  }</div>
<div class="line"><a name="l00622"></a><span class="lineno"> 622</span>  }</div>
<div class="line"><a name="l00623"></a><span class="lineno"> 623</span>  }</div>
<div class="line"><a name="l00624"></a><span class="lineno"> 624</span> </div>
<div class="line"><a name="l00625"></a><span class="lineno"> 625</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, InnerContig, IndexT, PtrTraits></a>(</div>
<div class="line"><a name="l00626"></a><span class="lineno"> 626</span>  data_, newSize, newStride);</div>
<div class="line"><a name="l00627"></a><span class="lineno"> 627</span> }</div>
<div class="line"><a name="l00628"></a><span class="lineno"> 628</span> </div>
<div class="line"><a name="l00629"></a><span class="lineno"> 629</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00630"></a><span class="lineno"> 630</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00631"></a><span class="lineno"> 631</span> <span class="keyword">template</span> <<span class="keywordtype">int</span> SubDim></div>
<div class="line"><a name="l00632"></a><span class="lineno"> 632</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, SubDim, InnerContig, IndexT, PtrTraits></a></div>
<div class="line"><a name="l00633"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a74dbc09519c9c14479b2d18f2e5042e8"> 633</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a35a63cfa4034a8ee14a999132d8a1828">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::view</a>(DataPtrType at) {</div>
<div class="line"><a name="l00634"></a><span class="lineno"> 634</span>  static_assert(SubDim >= 1 && SubDim < Dim,</div>
<div class="line"><a name="l00635"></a><span class="lineno"> 635</span>  <span class="stringliteral">"can only create view of lesser dim"</span>);</div>
<div class="line"><a name="l00636"></a><span class="lineno"> 636</span> </div>
<div class="line"><a name="l00637"></a><span class="lineno"> 637</span>  IndexT viewSizes[SubDim];</div>
<div class="line"><a name="l00638"></a><span class="lineno"> 638</span>  IndexT viewStrides[SubDim];</div>
<div class="line"><a name="l00639"></a><span class="lineno"> 639</span> </div>
<div class="line"><a name="l00640"></a><span class="lineno"> 640</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < SubDim; ++i) {</div>
<div class="line"><a name="l00641"></a><span class="lineno"> 641</span>  viewSizes[i] = size_[Dim - SubDim + i];</div>
<div class="line"><a name="l00642"></a><span class="lineno"> 642</span>  viewStrides[i] = stride_[Dim - SubDim + i];</div>
<div class="line"><a name="l00643"></a><span class="lineno"> 643</span>  }</div>
<div class="line"><a name="l00644"></a><span class="lineno"> 644</span> </div>
<div class="line"><a name="l00645"></a><span class="lineno"> 645</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, SubDim, InnerContig, IndexT, PtrTraits></a>(</div>
<div class="line"><a name="l00646"></a><span class="lineno"> 646</span>  at, viewSizes, viewStrides);</div>
<div class="line"><a name="l00647"></a><span class="lineno"> 647</span> }</div>
<div class="line"><a name="l00648"></a><span class="lineno"> 648</span> </div>
<div class="line"><a name="l00649"></a><span class="lineno"> 649</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00650"></a><span class="lineno"> 650</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00651"></a><span class="lineno"> 651</span> <span class="keyword">template</span> <<span class="keywordtype">int</span> SubDim></div>
<div class="line"><a name="l00652"></a><span class="lineno"> 652</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, SubDim, InnerContig, IndexT, PtrTraits></a></div>
<div class="line"><a name="l00653"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a35a63cfa4034a8ee14a999132d8a1828"> 653</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a35a63cfa4034a8ee14a999132d8a1828">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::view</a>() {</div>
<div class="line"><a name="l00654"></a><span class="lineno"> 654</span>  <span class="keywordflow">return</span> view<SubDim>(data_);</div>
<div class="line"><a name="l00655"></a><span class="lineno"> 655</span> }</div>
<div class="line"><a name="l00656"></a><span class="lineno"> 656</span> </div>
<div class="line"><a name="l00657"></a><span class="lineno"> 657</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00658"></a><span class="lineno"> 658</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00659"></a><span class="lineno"> 659</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a></div>
<div class="line"><a name="l00660"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#ac2d0fc7199901a8e0788b58f0970b133"> 660</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ac2d0fc7199901a8e0788b58f0970b133">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::narrowOutermost</a>(IndexT start,</div>
<div class="line"><a name="l00661"></a><span class="lineno"> 661</span>  IndexT size) {</div>
<div class="line"><a name="l00662"></a><span class="lineno"> 662</span>  <span class="keywordflow">return</span> this->narrow(0, start, size);</div>
<div class="line"><a name="l00663"></a><span class="lineno"> 663</span> }</div>
<div class="line"><a name="l00664"></a><span class="lineno"> 664</span> </div>
<div class="line"><a name="l00665"></a><span class="lineno"> 665</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00666"></a><span class="lineno"> 666</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00667"></a><span class="lineno"> 667</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a></div>
<div class="line"><a name="l00668"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#ab6db6bf86dd0f7e877af3a6ae2100fe3"> 668</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ab6db6bf86dd0f7e877af3a6ae2100fe3">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::narrow</a>(<span class="keywordtype">int</span> dim,</div>
<div class="line"><a name="l00669"></a><span class="lineno"> 669</span>  IndexT start,</div>
<div class="line"><a name="l00670"></a><span class="lineno"> 670</span>  IndexT size) {</div>
<div class="line"><a name="l00671"></a><span class="lineno"> 671</span>  DataPtrType newData = data_;</div>
<div class="line"><a name="l00672"></a><span class="lineno"> 672</span> </div>
<div class="line"><a name="l00673"></a><span class="lineno"> 673</span>  GPU_FAISS_ASSERT(start >= 0 &&</div>
<div class="line"><a name="l00674"></a><span class="lineno"> 674</span>  start < size_[dim] &&</div>
<div class="line"><a name="l00675"></a><span class="lineno"> 675</span>  (start + size) <= size_[dim]);</div>
<div class="line"><a name="l00676"></a><span class="lineno"> 676</span> </div>
<div class="line"><a name="l00677"></a><span class="lineno"> 677</span>  <span class="keywordflow">if</span> (start > 0) {</div>
<div class="line"><a name="l00678"></a><span class="lineno"> 678</span>  newData += (size_t) start * stride_[dim];</div>
<div class="line"><a name="l00679"></a><span class="lineno"> 679</span>  }</div>
<div class="line"><a name="l00680"></a><span class="lineno"> 680</span> </div>
<div class="line"><a name="l00681"></a><span class="lineno"> 681</span>  IndexT newSize[Dim];</div>
<div class="line"><a name="l00682"></a><span class="lineno"> 682</span>  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i < Dim; ++i) {</div>
<div class="line"><a name="l00683"></a><span class="lineno"> 683</span>  <span class="keywordflow">if</span> (i == dim) {</div>
<div class="line"><a name="l00684"></a><span class="lineno"> 684</span>  GPU_FAISS_ASSERT(start + size <= size_[dim]);</div>
<div class="line"><a name="l00685"></a><span class="lineno"> 685</span>  newSize[i] = size;</div>
<div class="line"><a name="l00686"></a><span class="lineno"> 686</span>  } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00687"></a><span class="lineno"> 687</span>  newSize[i] = size_[i];</div>
<div class="line"><a name="l00688"></a><span class="lineno"> 688</span>  }</div>
<div class="line"><a name="l00689"></a><span class="lineno"> 689</span>  }</div>
<div class="line"><a name="l00690"></a><span class="lineno"> 690</span> </div>
<div class="line"><a name="l00691"></a><span class="lineno"> 691</span>  <span class="comment">// If we were innermost contiguous before, we are still innermost contiguous</span></div>
<div class="line"><a name="l00692"></a><span class="lineno"> 692</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, Dim, InnerContig, IndexT, PtrTraits></a>(newData, newSize, stride_);</div>
<div class="line"><a name="l00693"></a><span class="lineno"> 693</span> }</div>
<div class="line"><a name="l00694"></a><span class="lineno"> 694</span> </div>
<div class="line"><a name="l00695"></a><span class="lineno"> 695</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00696"></a><span class="lineno"> 696</span>  <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> <<span class="keyword">typename</span> U> <span class="keyword">class </span>PtrTraits></div>
<div class="line"><a name="l00697"></a><span class="lineno"> 697</span> <span class="keyword">template</span> <<span class="keywordtype">int</span> NewDim></div>
<div class="line"><a name="l00698"></a><span class="lineno"> 698</span> __host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, InnerContig, IndexT, PtrTraits></a></div>
<div class="line"><a name="l00699"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a665d97851f0929cad7fc76f945b64c97"> 699</a></span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a35a63cfa4034a8ee14a999132d8a1828">Tensor<T, Dim, InnerContig, IndexT, PtrTraits>::view</a>(</div>
<div class="line"><a name="l00700"></a><span class="lineno"> 700</span>  std::initializer_list<IndexT> sizes) {</div>
<div class="line"><a name="l00701"></a><span class="lineno"> 701</span>  GPU_FAISS_ASSERT(this->isContiguous());</div>
<div class="line"><a name="l00702"></a><span class="lineno"> 702</span> </div>
<div class="line"><a name="l00703"></a><span class="lineno"> 703</span>  GPU_FAISS_ASSERT(sizes.size() == NewDim);</div>
<div class="line"><a name="l00704"></a><span class="lineno"> 704</span> </div>
<div class="line"><a name="l00705"></a><span class="lineno"> 705</span>  <span class="comment">// The total size of the new view must be the same as the total size</span></div>
<div class="line"><a name="l00706"></a><span class="lineno"> 706</span>  <span class="comment">// of the old view</span></div>
<div class="line"><a name="l00707"></a><span class="lineno"> 707</span>  <span class="keywordtype">size_t</span> curSize = numElements();</div>
<div class="line"><a name="l00708"></a><span class="lineno"> 708</span>  <span class="keywordtype">size_t</span> newSize = 1;</div>
<div class="line"><a name="l00709"></a><span class="lineno"> 709</span> </div>
<div class="line"><a name="l00710"></a><span class="lineno"> 710</span>  <span class="keywordflow">for</span> (<span class="keyword">auto</span> s : sizes) {</div>
<div class="line"><a name="l00711"></a><span class="lineno"> 711</span>  newSize *= s;</div>
<div class="line"><a name="l00712"></a><span class="lineno"> 712</span>  }</div>
<div class="line"><a name="l00713"></a><span class="lineno"> 713</span> </div>
<div class="line"><a name="l00714"></a><span class="lineno"> 714</span>  GPU_FAISS_ASSERT(curSize == newSize);</div>
<div class="line"><a name="l00715"></a><span class="lineno"> 715</span>  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor<T, NewDim, true, IndexT, PtrTraits></a>(data(), sizes);</div>
<div class="line"><a name="l00716"></a><span class="lineno"> 716</span> }</div>
<div class="line"><a name="l00717"></a><span class="lineno"> 717</span> </div>
<div class="line"><a name="l00718"></a><span class="lineno"> 718</span> } } <span class="comment">// namespace</span></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a309eb97e9c6dbfdecf383343c072d38c"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a309eb97e9c6dbfdecf383343c072d38c">faiss::gpu::Tensor::upcastOuter</a></div><div class="ttdeci">__host__ __device__ Tensor< T, NewDim, InnerContig, IndexT, PtrTraits > upcastOuter()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00489">Tensor-inl.cuh:489</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a9f0c817e9751fe02926c2346a97f0350"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a9f0c817e9751fe02926c2346a97f0350">faiss::gpu::Tensor::castIndexType</a></div><div class="ttdeci">__host__ Tensor< T, Dim, InnerContig, NewIndexT, PtrTraits > castIndexType() const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00340">Tensor-inl.cuh:340</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a3f4e3c6afdf4a03308756b6ae6462c38"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a3f4e3c6afdf4a03308756b6ae6462c38">faiss::gpu::Tensor::isContiguousDim</a></div><div class="ttdeci">__host__ __device__ bool isContiguousDim(int i) const </div><div class="ttdoc">Returns true if the given dimension index has no padding. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00446">Tensor-inl.cuh:446</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a2894f8fdfab8ec3245364a6f9e8a5259"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a2894f8fdfab8ec3245364a6f9e8a5259">faiss::gpu::Tensor::cast</a></div><div class="ttdeci">__host__ __device__ Tensor< U, Dim, InnerContig, IndexT, PtrTraits > cast()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00252">Tensor-inl.cuh:252</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a0ba9ab7c1676b7a41a6e6b2e5a490d2f"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">faiss::gpu::Tensor::numElements</a></div><div class="ttdeci">__host__ __device__ size_t numElements() const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00387">Tensor-inl.cuh:387</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a2185b0c1c2c06cc3a4dab6a88eb6d001"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a2185b0c1c2c06cc3a4dab6a88eb6d001">faiss::gpu::Tensor::downcastOuter</a></div><div class="ttdeci">__host__ __device__ Tensor< T, NewDim, InnerContig, IndexT, PtrTraits > downcastOuter()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00545">Tensor-inl.cuh:545</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a7fbbf51f8ef6bea9cc863a86e20d994e"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a7fbbf51f8ef6bea9cc863a86e20d994e">faiss::gpu::Tensor::canCastResize</a></div><div class="ttdeci">__host__ __device__ bool canCastResize() const </div><div class="ttdoc">Returns true if we can castResize() this tensor to the new type. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00308">Tensor-inl.cuh:308</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a2ec506a25e46cf7001060a6ba5ae3b94"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a2ec506a25e46cf7001060a6ba5ae3b94">faiss::gpu::Tensor::data_</a></div><div class="ttdeci">DataPtrType data_</div><div class="ttdoc">Raw pointer to where the tensor data begins. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00343">Tensor.cuh:343</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a8ae7b3f95991125a5648c3b78afd40bd"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">faiss::gpu::Tensor::Tensor</a></div><div class="ttdeci">__host__ __device__ Tensor()</div><div class="ttdoc">Default constructor. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00019">Tensor-inl.cuh:19</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_aee5cf46d16344e2a055cf63adb07d24a"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#aee5cf46d16344e2a055cf63adb07d24a">faiss::gpu::Tensor::upcastInner</a></div><div class="ttdeci">__host__ __device__ Tensor< T, NewDim, InnerContig, IndexT, PtrTraits > upcastInner()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00518">Tensor-inl.cuh:518</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_ac2d0fc7199901a8e0788b58f0970b133"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#ac2d0fc7199901a8e0788b58f0970b133">faiss::gpu::Tensor::narrowOutermost</a></div><div class="ttdeci">__host__ __device__ Tensor< T, Dim, InnerContig, IndexT, PtrTraits > narrowOutermost(IndexT start, IndexT size)</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00660">Tensor-inl.cuh:660</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_af4b8fe4b632cdca51ee7972ed93fc3fa"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">faiss::gpu::Tensor::stride_</a></div><div class="ttdeci">IndexT stride_[Dim]</div><div class="ttdoc">Array of strides (in sizeof(T) terms) per each dimension. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00346">Tensor.cuh:346</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a09019c54911db891c9321fd3b34509c2"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a09019c54911db891c9321fd3b34509c2">faiss::gpu::Tensor::isContiguous</a></div><div class="ttdeci">__host__ __device__ bool isContiguous() const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00400">Tensor-inl.cuh:400</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_abc0ecc4f882ee09632b5a06be0619adb"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#abc0ecc4f882ee09632b5a06be0619adb">faiss::gpu::Tensor::sizes</a></div><div class="ttdeci">__host__ __device__ const IndexT * sizes() const </div><div class="ttdoc">Returns the size array. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00244">Tensor.cuh:244</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6dc00c182a92389b74c89ba7fcab40d3"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6dc00c182a92389b74c89ba7fcab40d3">faiss::gpu::Tensor::copyFrom</a></div><div class="ttdeci">__host__ void copyFrom(Tensor< T, Dim, InnerContig, IndexT, PtrTraits > &t, cudaStream_t stream)</div><div class="ttdoc">Copies a tensor into ourselves; sizes must match. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00131">Tensor-inl.cuh:131</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_ad96fbf0f5e7c06a1031b8b18f7fc01d7"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">faiss::gpu::Tensor::size_</a></div><div class="ttdeci">IndexT size_[Dim]</div><div class="ttdoc">Size per each dimension. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00349">Tensor.cuh:349</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a0d831a352531281e06250cc6fe52a38a"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a0d831a352531281e06250cc6fe52a38a">faiss::gpu::Tensor::operator=</a></div><div class="ttdeci">__host__ __device__ Tensor< T, Dim, InnerContig, IndexT, PtrTraits > & operator=(Tensor< T, Dim, InnerContig, IndexT, PtrTraits > &t)</div><div class="ttdoc">Assignment. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00049">Tensor-inl.cuh:49</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a87a777247486756e99060547a3cc833a"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a87a777247486756e99060547a3cc833a">faiss::gpu::Tensor::strides</a></div><div class="ttdeci">__host__ __device__ const IndexT * strides() const </div><div class="ttdoc">Returns the stride array. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00249">Tensor.cuh:249</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6699c311648457f257afa340c61f417c"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">faiss::gpu::Tensor::getSize</a></div><div class="ttdeci">__host__ __device__ IndexT getSize(int i) const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00223">Tensor.cuh:223</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a22c1e45f81f7f9e5427e2eed19f9cd11"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a22c1e45f81f7f9e5427e2eed19f9cd11">faiss::gpu::Tensor::isSameSize</a></div><div class="ttdeci">__host__ __device__ bool isSameSize(const Tensor< OtherT, OtherDim, InnerContig, IndexT, PtrTraits > &rhs) const </div><div class="ttdoc">Returns true if the two tensors are of the same dimensionality and size. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00233">Tensor-inl.cuh:233</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6a43125c6f429f28161d59f19eb8e5c5"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6a43125c6f429f28161d59f19eb8e5c5">faiss::gpu::Tensor::downcastInner</a></div><div class="ttdeci">__host__ __device__ Tensor< T, NewDim, InnerContig, IndexT, PtrTraits > downcastInner()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00590">Tensor-inl.cuh:590</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_ab6db6bf86dd0f7e877af3a6ae2100fe3"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#ab6db6bf86dd0f7e877af3a6ae2100fe3">faiss::gpu::Tensor::narrow</a></div><div class="ttdeci">__host__ __device__ Tensor< T, Dim, InnerContig, IndexT, PtrTraits > narrow(int dim, IndexT start, IndexT size)</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00668">Tensor-inl.cuh:668</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a50411ce4d0fa32ef715e3321b6e33212"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">faiss::gpu::Tensor::data</a></div><div class="ttdeci">__host__ __device__ DataPtrType data()</div><div class="ttdoc">Returns a raw pointer to the start of our data. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00175">Tensor.cuh:175</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6cc21376070a03d77661d6e333972c6a"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6cc21376070a03d77661d6e333972c6a">faiss::gpu::Tensor::copyTo</a></div><div class="ttdeci">__host__ void copyTo(Tensor< T, Dim, InnerContig, IndexT, PtrTraits > &t, cudaStream_t stream)</div><div class="ttdoc">Copies ourselves into a tensor; sizes must match. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00170">Tensor-inl.cuh:170</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html">faiss::gpu::Tensor</a></div><div class="ttdoc">Our tensor type. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00029">Tensor.cuh:29</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a2ac9dc9fa8d81f2651a1be486c14ba62"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a2ac9dc9fa8d81f2651a1be486c14ba62">faiss::gpu::Tensor::canUseIndexType</a></div><div class="ttdeci">__host__ bool canUseIndexType() const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00360">Tensor-inl.cuh:360</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a82a3484a6458e3e95bb91d320f2c6731"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a82a3484a6458e3e95bb91d320f2c6731">faiss::gpu::Tensor::transpose</a></div><div class="ttdeci">__host__ __device__ Tensor< T, Dim, InnerContig, IndexT, PtrTraits > transpose(int dim1, int dim2) const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00455">Tensor-inl.cuh:455</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a0b8bba630f7a1fa217f90b20d298420a"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a0b8bba630f7a1fa217f90b20d298420a">faiss::gpu::Tensor::getStride</a></div><div class="ttdeci">__host__ __device__ IndexT getStride(int i) const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00229">Tensor.cuh:229</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6c9640c365134ccc33cdb2695b016eb3"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6c9640c365134ccc33cdb2695b016eb3">faiss::gpu::Tensor::castResize</a></div><div class="ttdeci">__host__ __device__ Tensor< U, Dim, InnerContig, IndexT, PtrTraits > castResize()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00274">Tensor-inl.cuh:274</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a35a63cfa4034a8ee14a999132d8a1828"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a35a63cfa4034a8ee14a999132d8a1828">faiss::gpu::Tensor::view</a></div><div class="ttdeci">__host__ __device__ Tensor< T, SubDim, InnerContig, IndexT, PtrTraits > view()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00653">Tensor-inl.cuh:653</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a3067941f8f8f09fc73e2f06243699825"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a3067941f8f8f09fc73e2f06243699825">faiss::gpu::Tensor::isSame</a></div><div class="ttdeci">__host__ __device__ bool isSame(const Tensor< OtherT, OtherDim, InnerContig, IndexT, PtrTraits > &rhs) const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00210">Tensor-inl.cuh:210</a></div></div>
</div><!-- fragment --></div><!-- contents -->
<!-- start footer part -->
<hr class="footer"/><address class="footer"><small>
Generated by  <a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/>
</a> 1.8.5
</small></address>
</body>
</html>