Tensor-inl_8cuh_source.html 132 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.5"/>
<title>Faiss: /tmp/faiss/gpu/utils/Tensor-inl.cuh Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
  $(document).ready(function() { searchBox.OnSelectItem(0); });
</script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
 <tbody>
 <tr style="height: 56px;">
  <td style="padding-left: 0.5em;">
   <div id="projectname">Faiss
   </div>
  </td>
 </tr>
 </tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.5 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
  <div id="navrow1" class="tabs">
    <ul class="tablist">
      <li><a href="index.html"><span>Main&#160;Page</span></a></li>
      <li><a href="namespaces.html"><span>Namespaces</span></a></li>
      <li><a href="annotated.html"><span>Classes</span></a></li>
      <li class="current"><a href="files.html"><span>Files</span></a></li>
      <li>
        <div id="MSearchBox" class="MSearchBoxInactive">
        <span class="left">
          <img id="MSearchSelect" src="search/mag_sel.png"
               onmouseover="return searchBox.OnSearchSelectShow()"
               onmouseout="return searchBox.OnSearchSelectHide()"
               alt=""/>
          <input type="text" id="MSearchField" value="Search" accesskey="S"
               onfocus="searchBox.OnSearchFieldFocus(true)" 
               onblur="searchBox.OnSearchFieldFocus(false)" 
               onkeyup="searchBox.OnSearchFieldChange(event)"/>
          </span><span class="right">
            <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
          </span>
        </div>
      </li>
    </ul>
  </div>
  <div id="navrow2" class="tabs2">
    <ul class="tablist">
      <li><a href="files.html"><span>File&#160;List</span></a></li>
    </ul>
  </div>
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
     onmouseover="return searchBox.OnSearchSelectShow()"
     onmouseout="return searchBox.OnSearchSelectHide()"
     onkeydown="return searchBox.OnSearchSelectKey(event)">
<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark">&#160;</span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark">&#160;</span>Classes</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark">&#160;</span>Namespaces</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark">&#160;</span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark">&#160;</span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark">&#160;</span>Typedefs</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(6)"><span class="SelectionMark">&#160;</span>Enumerations</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(7)"><span class="SelectionMark">&#160;</span>Enumerator</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(8)"><span class="SelectionMark">&#160;</span>Friends</a></div>

<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0" 
        name="MSearchResults" id="MSearchResults">
</iframe>
</div>

<div id="nav-path" class="navpath">
  <ul>
<li class="navelem"><a class="el" href="dir_af0e5773a0d3761542ab6067d117c294.html">gpu</a></li><li class="navelem"><a class="el" href="dir_4b23abee0b4e5d71a28bc7475a9e97e1.html">utils</a></li>  </ul>
</div>
</div><!-- top -->
<div class="header">
  <div class="headertitle">
<div class="title">Tensor-inl.cuh</div>  </div>
</div><!--header-->
<div class="contents">
<div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">/**</span></div>
<div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment"> * Copyright (c) 2015-present, Facebook, Inc.</span></div>
<div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="comment"> * All rights reserved.</span></div>
<div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="comment"> *</span></div>
<div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="comment"> * This source code is licensed under the BSD+Patents license found in the</span></div>
<div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="comment"> * LICENSE file in the root directory of this source tree.</span></div>
<div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="comment"> */</span></div>
<div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;</div>
<div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;</div>
<div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="preprocessor">#include &quot;../GpuFaissAssert.h&quot;</span></div>
<div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="preprocessor">#include &quot;DeviceUtils.h&quot;</span></div>
<div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="preprocessor">#include &lt;limits&gt;</span></div>
<div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;</div>
<div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="keyword">namespace </span>faiss { <span class="keyword">namespace </span>gpu {</div>
<div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;</div>
<div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;__host__ __device__</div>
<div class="line"><a name="l00019"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">   19</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::Tensor</a>()</div>
<div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;    : data_(nullptr) {</div>
<div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;  static_assert(Dim &gt; 0, <span class="stringliteral">&quot;must have &gt; 0 dimensions&quot;</span>);</div>
<div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;</div>
<div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim; ++i) {</div>
<div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;    <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">size_</a>[i] = 0;</div>
<div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;    <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[i] = (IndexT) 1;</div>
<div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;  }</div>
<div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;}</div>
<div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;</div>
<div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;__host__ __device__</div>
<div class="line"><a name="l00032"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a4396d8789bb829a4d614900b2a632bc9">   32</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::Tensor</a>(</div>
<div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;</a>&amp; t) {</div>
<div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;  this-&gt;operator=(t);</div>
<div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;}</div>
<div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;</div>
<div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;__host__ __device__</div>
<div class="line"><a name="l00040"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a37db8663b2fd9e1da8c4dea4e2bdb1f3">   40</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::Tensor</a>(</div>
<div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;</a>&amp;&amp; t) {</div>
<div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;  this-&gt;operator=(std::move(t));</div>
<div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;}</div>
<div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;</div>
<div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;__host__ __device__</div>
<div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;</a>&amp;</div>
<div class="line"><a name="l00049"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a0d831a352531281e06250cc6fe52a38a">   49</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0d831a352531281e06250cc6fe52a38a">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::operator=</a>(</div>
<div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;</a>&amp; t) {</div>
<div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;  data_ = t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2ec506a25e46cf7001060a6ba5ae3b94">data_</a>;</div>
<div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim; ++i) {</div>
<div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;    size_[i] = t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">size_</a>[i];</div>
<div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;    stride_[i] = t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[i];</div>
<div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;  }</div>
<div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;</div>
<div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;  <span class="keywordflow">return</span> *<span class="keyword">this</span>;</div>
<div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;}</div>
<div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;</div>
<div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;__host__ __device__</div>
<div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;</a>&amp;</div>
<div class="line"><a name="l00064"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#ae086a03b8067e18d0c2dda0892dc9e39">   64</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0d831a352531281e06250cc6fe52a38a">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::operator=</a>(</div>
<div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;</a>&amp;&amp; t) {</div>
<div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;  data_ = t.data_; t.data_ = <span class="keyword">nullptr</span>;</div>
<div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim; ++i) {</div>
<div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;    stride_[i] = t.stride_[i]; t.stride_[i] = 0;</div>
<div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;    size_[i] = t.size_[i]; t.size_[i] = 0;</div>
<div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;  }</div>
<div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;</div>
<div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;  <span class="keywordflow">return</span> *<span class="keyword">this</span>;</div>
<div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;}</div>
<div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;</div>
<div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;__host__ __device__</div>
<div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::</a></div>
<div class="line"><a name="l00079"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a88210dee96fc97b00f0ab45749528fe9">   79</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor</a>(DataPtrType data, <span class="keyword">const</span> IndexT sizes[Dim])</div>
<div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;    : data_(data) {</div>
<div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;  static_assert(Dim &gt; 0, <span class="stringliteral">&quot;must have &gt; 0 dimensions&quot;</span>);</div>
<div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;</div>
<div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim; ++i) {</div>
<div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;    <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">size_</a>[i] = <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#abc0ecc4f882ee09632b5a06be0619adb">sizes</a>[i];</div>
<div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;  }</div>
<div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;</div>
<div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[Dim - 1] = (IndexT) 1;</div>
<div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = Dim - 2; i &gt;= 0; --i) {</div>
<div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;    <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[i] = <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[i + 1] * <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#abc0ecc4f882ee09632b5a06be0619adb">sizes</a>[i + 1];</div>
<div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;  }</div>
<div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;}</div>
<div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;</div>
<div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;__host__ __device__</div>
<div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::</a></div>
<div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor</a>(DataPtrType data, std::initializer_list&lt;IndexT&gt; sizes)</div>
<div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;    : data_(data) {</div>
<div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;  GPU_FAISS_ASSERT(sizes.size() == Dim);</div>
<div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;  static_assert(Dim &gt; 0, <span class="stringliteral">&quot;must have &gt; 0 dimensions&quot;</span>);</div>
<div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;</div>
<div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;  <span class="keywordtype">int</span> i = 0;</div>
<div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;  <span class="keywordflow">for</span> (<span class="keyword">auto</span> s : sizes) {</div>
<div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;    <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">size_</a>[i++] = s;</div>
<div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;  }</div>
<div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;</div>
<div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[Dim - 1] = (IndexT) 1;</div>
<div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> j = Dim - 2; j &gt;= 0; --j) {</div>
<div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;    <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[j] = <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[j + 1] * <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">size_</a>[j + 1];</div>
<div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;  }</div>
<div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;}</div>
<div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;</div>
<div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;</div>
<div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;__host__ __device__</div>
<div class="line"><a name="l00117"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#ac651b20d86813b8928f05cde4fb1ff7d">  117</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::Tensor</a>(</div>
<div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;  DataPtrType data, <span class="keyword">const</span> IndexT sizes[Dim], <span class="keyword">const</span> IndexT strides[Dim])</div>
<div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;    : data_(data) {</div>
<div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;  static_assert(Dim &gt; 0, <span class="stringliteral">&quot;must have &gt; 0 dimensions&quot;</span>);</div>
<div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;</div>
<div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim; ++i) {</div>
<div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;    <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">size_</a>[i] = sizes[i];</div>
<div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;    <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">stride_</a>[i] = <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a87a777247486756e99060547a3cc833a">strides</a>[i];</div>
<div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;  }</div>
<div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;}</div>
<div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;</div>
<div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;__host__ <span class="keywordtype">void</span></div>
<div class="line"><a name="l00131"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a6dc00c182a92389b74c89ba7fcab40d3">  131</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6dc00c182a92389b74c89ba7fcab40d3">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::copyFrom</a>(</div>
<div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;</a>&amp; t,</div>
<div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;  cudaStream_t stream) {</div>
<div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;  <span class="comment">// The tensor must be fully contiguous</span></div>
<div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;  GPU_FAISS_ASSERT(this-&gt;isContiguous());</div>
<div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;</div>
<div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;  <span class="comment">// Size must be the same (since dimensions are checked and</span></div>
<div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;  <span class="comment">// continuity is assumed, we need only check total number of</span></div>
<div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;  <span class="comment">// elements</span></div>
<div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;  GPU_FAISS_ASSERT(this-&gt;numElements() == t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">numElements</a>());</div>
<div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;</div>
<div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;  <span class="keywordflow">if</span> (t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">numElements</a>() &gt; 0) {</div>
<div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;    GPU_FAISS_ASSERT(this-&gt;data_);</div>
<div class="line"><a name="l00144"></a><span class="lineno">  144</span>&#160;    GPU_FAISS_ASSERT(t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>());</div>
<div class="line"><a name="l00145"></a><span class="lineno">  145</span>&#160;</div>
<div class="line"><a name="l00146"></a><span class="lineno">  146</span>&#160;    <span class="keywordtype">int</span> ourDev = getDeviceForAddress(this-&gt;data_);</div>
<div class="line"><a name="l00147"></a><span class="lineno">  147</span>&#160;    <span class="keywordtype">int</span> tDev = getDeviceForAddress(t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>());</div>
<div class="line"><a name="l00148"></a><span class="lineno">  148</span>&#160;</div>
<div class="line"><a name="l00149"></a><span class="lineno">  149</span>&#160;    <span class="keywordflow">if</span> (tDev == -1) {</div>
<div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;      CUDA_VERIFY(cudaMemcpyAsync(this-&gt;data_,</div>
<div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;                                  t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>(),</div>
<div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;                                  this-&gt;getSizeInBytes(),</div>
<div class="line"><a name="l00153"></a><span class="lineno">  153</span>&#160;                                  ourDev == -1 ? cudaMemcpyHostToHost :</div>
<div class="line"><a name="l00154"></a><span class="lineno">  154</span>&#160;                                  cudaMemcpyHostToDevice,</div>
<div class="line"><a name="l00155"></a><span class="lineno">  155</span>&#160;                                  stream));</div>
<div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;    } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00157"></a><span class="lineno">  157</span>&#160;      CUDA_VERIFY(cudaMemcpyAsync(this-&gt;data_,</div>
<div class="line"><a name="l00158"></a><span class="lineno">  158</span>&#160;                                  t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>(),</div>
<div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;                                  this-&gt;getSizeInBytes(),</div>
<div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;                                  ourDev == -1 ? cudaMemcpyDeviceToHost :</div>
<div class="line"><a name="l00161"></a><span class="lineno">  161</span>&#160;                                  cudaMemcpyDeviceToDevice,</div>
<div class="line"><a name="l00162"></a><span class="lineno">  162</span>&#160;                                  stream));</div>
<div class="line"><a name="l00163"></a><span class="lineno">  163</span>&#160;    }</div>
<div class="line"><a name="l00164"></a><span class="lineno">  164</span>&#160;  }</div>
<div class="line"><a name="l00165"></a><span class="lineno">  165</span>&#160;}</div>
<div class="line"><a name="l00166"></a><span class="lineno">  166</span>&#160;</div>
<div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;__host__ <span class="keywordtype">void</span></div>
<div class="line"><a name="l00170"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a6cc21376070a03d77661d6e333972c6a">  170</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6cc21376070a03d77661d6e333972c6a">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::copyTo</a>(</div>
<div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;</a>&amp; t,</div>
<div class="line"><a name="l00172"></a><span class="lineno">  172</span>&#160;  cudaStream_t stream) {</div>
<div class="line"><a name="l00173"></a><span class="lineno">  173</span>&#160;  <span class="comment">// The tensor must be fully contiguous</span></div>
<div class="line"><a name="l00174"></a><span class="lineno">  174</span>&#160;  GPU_FAISS_ASSERT(this-&gt;isContiguous());</div>
<div class="line"><a name="l00175"></a><span class="lineno">  175</span>&#160;</div>
<div class="line"><a name="l00176"></a><span class="lineno">  176</span>&#160;  <span class="comment">// Size must be the same (since dimensions are checked and</span></div>
<div class="line"><a name="l00177"></a><span class="lineno">  177</span>&#160;  <span class="comment">// continuity is assumed, we need only check total number of</span></div>
<div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;  <span class="comment">// elements</span></div>
<div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;  GPU_FAISS_ASSERT(this-&gt;numElements() == t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">numElements</a>());</div>
<div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;</div>
<div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;  <span class="keywordflow">if</span> (t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">numElements</a>() &gt; 0) {</div>
<div class="line"><a name="l00182"></a><span class="lineno">  182</span>&#160;    GPU_FAISS_ASSERT(this-&gt;data_);</div>
<div class="line"><a name="l00183"></a><span class="lineno">  183</span>&#160;    GPU_FAISS_ASSERT(t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>());</div>
<div class="line"><a name="l00184"></a><span class="lineno">  184</span>&#160;</div>
<div class="line"><a name="l00185"></a><span class="lineno">  185</span>&#160;    <span class="keywordtype">int</span> ourDev = getDeviceForAddress(this-&gt;data_);</div>
<div class="line"><a name="l00186"></a><span class="lineno">  186</span>&#160;    <span class="keywordtype">int</span> tDev = getDeviceForAddress(t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>());</div>
<div class="line"><a name="l00187"></a><span class="lineno">  187</span>&#160;</div>
<div class="line"><a name="l00188"></a><span class="lineno">  188</span>&#160;    <span class="keywordflow">if</span> (tDev == -1) {</div>
<div class="line"><a name="l00189"></a><span class="lineno">  189</span>&#160;      CUDA_VERIFY(cudaMemcpyAsync(t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>(),</div>
<div class="line"><a name="l00190"></a><span class="lineno">  190</span>&#160;                                  this-&gt;data_,</div>
<div class="line"><a name="l00191"></a><span class="lineno">  191</span>&#160;                                  this-&gt;getSizeInBytes(),</div>
<div class="line"><a name="l00192"></a><span class="lineno">  192</span>&#160;                                  ourDev == -1 ? cudaMemcpyHostToHost :</div>
<div class="line"><a name="l00193"></a><span class="lineno">  193</span>&#160;                                  cudaMemcpyDeviceToHost,</div>
<div class="line"><a name="l00194"></a><span class="lineno">  194</span>&#160;                                  stream));</div>
<div class="line"><a name="l00195"></a><span class="lineno">  195</span>&#160;    } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00196"></a><span class="lineno">  196</span>&#160;      CUDA_VERIFY(cudaMemcpyAsync(t.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>(),</div>
<div class="line"><a name="l00197"></a><span class="lineno">  197</span>&#160;                                  this-&gt;data_,</div>
<div class="line"><a name="l00198"></a><span class="lineno">  198</span>&#160;                                  this-&gt;getSizeInBytes(),</div>
<div class="line"><a name="l00199"></a><span class="lineno">  199</span>&#160;                                  ourDev == -1 ? cudaMemcpyHostToDevice :</div>
<div class="line"><a name="l00200"></a><span class="lineno">  200</span>&#160;                                  cudaMemcpyDeviceToDevice,</div>
<div class="line"><a name="l00201"></a><span class="lineno">  201</span>&#160;                                  stream));</div>
<div class="line"><a name="l00202"></a><span class="lineno">  202</span>&#160;    }</div>
<div class="line"><a name="l00203"></a><span class="lineno">  203</span>&#160;  }</div>
<div class="line"><a name="l00204"></a><span class="lineno">  204</span>&#160;}</div>
<div class="line"><a name="l00205"></a><span class="lineno">  205</span>&#160;</div>
<div class="line"><a name="l00206"></a><span class="lineno">  206</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00207"></a><span class="lineno">  207</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00208"></a><span class="lineno">  208</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> OtherT, <span class="keywordtype">int</span> OtherDim&gt;</div>
<div class="line"><a name="l00209"></a><span class="lineno">  209</span>&#160;__host__ __device__ <span class="keywordtype">bool</span></div>
<div class="line"><a name="l00210"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a3067941f8f8f09fc73e2f06243699825">  210</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a3067941f8f8f09fc73e2f06243699825">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::isSame</a>(</div>
<div class="line"><a name="l00211"></a><span class="lineno">  211</span>&#160;  <span class="keyword">const</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;OtherT, OtherDim, InnerContig, IndexT, PtrTraits&gt;</a>&amp; rhs)<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00212"></a><span class="lineno">  212</span>&#160;  <span class="keywordflow">if</span> (Dim != OtherDim) {</div>
<div class="line"><a name="l00213"></a><span class="lineno">  213</span>&#160;    <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00214"></a><span class="lineno">  214</span>&#160;  }</div>
<div class="line"><a name="l00215"></a><span class="lineno">  215</span>&#160;</div>
<div class="line"><a name="l00216"></a><span class="lineno">  216</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim; ++i) {</div>
<div class="line"><a name="l00217"></a><span class="lineno">  217</span>&#160;    <span class="keywordflow">if</span> (this-&gt;getSize(i) != rhs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(i)) {</div>
<div class="line"><a name="l00218"></a><span class="lineno">  218</span>&#160;      <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00219"></a><span class="lineno">  219</span>&#160;    }</div>
<div class="line"><a name="l00220"></a><span class="lineno">  220</span>&#160;</div>
<div class="line"><a name="l00221"></a><span class="lineno">  221</span>&#160;    <span class="keywordflow">if</span> (this-&gt;getStride(i) != rhs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0b8bba630f7a1fa217f90b20d298420a">getStride</a>(i)) {</div>
<div class="line"><a name="l00222"></a><span class="lineno">  222</span>&#160;      <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00223"></a><span class="lineno">  223</span>&#160;    }</div>
<div class="line"><a name="l00224"></a><span class="lineno">  224</span>&#160;  }</div>
<div class="line"><a name="l00225"></a><span class="lineno">  225</span>&#160;</div>
<div class="line"><a name="l00226"></a><span class="lineno">  226</span>&#160;  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
<div class="line"><a name="l00227"></a><span class="lineno">  227</span>&#160;}</div>
<div class="line"><a name="l00228"></a><span class="lineno">  228</span>&#160;</div>
<div class="line"><a name="l00229"></a><span class="lineno">  229</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00230"></a><span class="lineno">  230</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00231"></a><span class="lineno">  231</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> OtherT, <span class="keywordtype">int</span> OtherDim&gt;</div>
<div class="line"><a name="l00232"></a><span class="lineno">  232</span>&#160;__host__ __device__ <span class="keywordtype">bool</span></div>
<div class="line"><a name="l00233"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a22c1e45f81f7f9e5427e2eed19f9cd11">  233</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a22c1e45f81f7f9e5427e2eed19f9cd11">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::isSameSize</a>(</div>
<div class="line"><a name="l00234"></a><span class="lineno">  234</span>&#160;  <span class="keyword">const</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;OtherT, OtherDim, InnerContig, IndexT, PtrTraits&gt;</a>&amp; rhs)<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00235"></a><span class="lineno">  235</span>&#160;  <span class="keywordflow">if</span> (Dim != OtherDim) {</div>
<div class="line"><a name="l00236"></a><span class="lineno">  236</span>&#160;    <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00237"></a><span class="lineno">  237</span>&#160;  }</div>
<div class="line"><a name="l00238"></a><span class="lineno">  238</span>&#160;</div>
<div class="line"><a name="l00239"></a><span class="lineno">  239</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim; ++i) {</div>
<div class="line"><a name="l00240"></a><span class="lineno">  240</span>&#160;    <span class="keywordflow">if</span> (this-&gt;getSize(i) != rhs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(i)) {</div>
<div class="line"><a name="l00241"></a><span class="lineno">  241</span>&#160;      <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00242"></a><span class="lineno">  242</span>&#160;    }</div>
<div class="line"><a name="l00243"></a><span class="lineno">  243</span>&#160;  }</div>
<div class="line"><a name="l00244"></a><span class="lineno">  244</span>&#160;</div>
<div class="line"><a name="l00245"></a><span class="lineno">  245</span>&#160;  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
<div class="line"><a name="l00246"></a><span class="lineno">  246</span>&#160;}</div>
<div class="line"><a name="l00247"></a><span class="lineno">  247</span>&#160;</div>
<div class="line"><a name="l00248"></a><span class="lineno">  248</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00249"></a><span class="lineno">  249</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00250"></a><span class="lineno">  250</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt;</div>
<div class="line"><a name="l00251"></a><span class="lineno">  251</span>&#160;__host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;U, Dim, InnerContig, IndexT, PtrTraits&gt;</a></div>
<div class="line"><a name="l00252"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a2894f8fdfab8ec3245364a6f9e8a5259">  252</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2894f8fdfab8ec3245364a6f9e8a5259">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::cast</a>() {</div>
<div class="line"><a name="l00253"></a><span class="lineno">  253</span>&#160;  static_assert(<span class="keyword">sizeof</span>(U) == <span class="keyword">sizeof</span>(T), <span class="stringliteral">&quot;cast must be to same size object&quot;</span>);</div>
<div class="line"><a name="l00254"></a><span class="lineno">  254</span>&#160;</div>
<div class="line"><a name="l00255"></a><span class="lineno">  255</span>&#160;  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;U, Dim, InnerContig, IndexT, PtrTraits&gt;</a>(</div>
<div class="line"><a name="l00256"></a><span class="lineno">  256</span>&#160;    <span class="keyword">reinterpret_cast&lt;</span>U*<span class="keyword">&gt;</span>(data_), size_, stride_);</div>
<div class="line"><a name="l00257"></a><span class="lineno">  257</span>&#160;}</div>
<div class="line"><a name="l00258"></a><span class="lineno">  258</span>&#160;</div>
<div class="line"><a name="l00259"></a><span class="lineno">  259</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00260"></a><span class="lineno">  260</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00261"></a><span class="lineno">  261</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt;</div>
<div class="line"><a name="l00262"></a><span class="lineno">  262</span>&#160;__host__ __device__ <span class="keyword">const</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;U, Dim, InnerContig, IndexT, PtrTraits&gt;</a></div>
<div class="line"><a name="l00263"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a79a16bd4300ca8fdba52932c7c97cce9">  263</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2894f8fdfab8ec3245364a6f9e8a5259">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::cast</a>()<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00264"></a><span class="lineno">  264</span>&#160;  static_assert(<span class="keyword">sizeof</span>(U) == <span class="keyword">sizeof</span>(T), <span class="stringliteral">&quot;cast must be to same size object&quot;</span>);</div>
<div class="line"><a name="l00265"></a><span class="lineno">  265</span>&#160;</div>
<div class="line"><a name="l00266"></a><span class="lineno">  266</span>&#160;  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;U, Dim, InnerContig, IndexT, PtrTraits&gt;</a>(</div>
<div class="line"><a name="l00267"></a><span class="lineno">  267</span>&#160;    <span class="keyword">reinterpret_cast&lt;</span>U*<span class="keyword">&gt;</span>(data_), size_, stride_);</div>
<div class="line"><a name="l00268"></a><span class="lineno">  268</span>&#160;}</div>
<div class="line"><a name="l00269"></a><span class="lineno">  269</span>&#160;</div>
<div class="line"><a name="l00270"></a><span class="lineno">  270</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00271"></a><span class="lineno">  271</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00272"></a><span class="lineno">  272</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt;</div>
<div class="line"><a name="l00273"></a><span class="lineno">  273</span>&#160;__host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;U, Dim, InnerContig, IndexT, PtrTraits&gt;</a></div>
<div class="line"><a name="l00274"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a6c9640c365134ccc33cdb2695b016eb3">  274</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6c9640c365134ccc33cdb2695b016eb3">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::castResize</a>() {</div>
<div class="line"><a name="l00275"></a><span class="lineno">  275</span>&#160;  static_assert(<span class="keyword">sizeof</span>(U) &gt;= <span class="keyword">sizeof</span>(T), <span class="stringliteral">&quot;only handles greater sizes&quot;</span>);</div>
<div class="line"><a name="l00276"></a><span class="lineno">  276</span>&#160;  constexpr <span class="keywordtype">int</span> kMultiple = <span class="keyword">sizeof</span>(U) / <span class="keyword">sizeof</span>(T);</div>
<div class="line"><a name="l00277"></a><span class="lineno">  277</span>&#160;</div>
<div class="line"><a name="l00278"></a><span class="lineno">  278</span>&#160;  GPU_FAISS_ASSERT(canCastResize&lt;U&gt;());</div>
<div class="line"><a name="l00279"></a><span class="lineno">  279</span>&#160;</div>
<div class="line"><a name="l00280"></a><span class="lineno">  280</span>&#160;  IndexT newSize[Dim];</div>
<div class="line"><a name="l00281"></a><span class="lineno">  281</span>&#160;  IndexT newStride[Dim];</div>
<div class="line"><a name="l00282"></a><span class="lineno">  282</span>&#160;</div>
<div class="line"><a name="l00283"></a><span class="lineno">  283</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim - 1; ++i) {</div>
<div class="line"><a name="l00284"></a><span class="lineno">  284</span>&#160;    newSize[i] = size_[i];</div>
<div class="line"><a name="l00285"></a><span class="lineno">  285</span>&#160;    newStride[i] = stride_[i] / kMultiple;</div>
<div class="line"><a name="l00286"></a><span class="lineno">  286</span>&#160;  }</div>
<div class="line"><a name="l00287"></a><span class="lineno">  287</span>&#160;</div>
<div class="line"><a name="l00288"></a><span class="lineno">  288</span>&#160;  newStride[Dim - 1] = 1; <span class="comment">// this is the same as the old stride</span></div>
<div class="line"><a name="l00289"></a><span class="lineno">  289</span>&#160;  newSize[Dim - 1] = size_[Dim - 1] / kMultiple;</div>
<div class="line"><a name="l00290"></a><span class="lineno">  290</span>&#160;</div>
<div class="line"><a name="l00291"></a><span class="lineno">  291</span>&#160;  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;U, Dim, InnerContig, IndexT, PtrTraits&gt;</a>(</div>
<div class="line"><a name="l00292"></a><span class="lineno">  292</span>&#160;    <span class="keyword">reinterpret_cast&lt;</span>U*<span class="keyword">&gt;</span>(data_), newSize, newStride);</div>
<div class="line"><a name="l00293"></a><span class="lineno">  293</span>&#160;}</div>
<div class="line"><a name="l00294"></a><span class="lineno">  294</span>&#160;</div>
<div class="line"><a name="l00295"></a><span class="lineno">  295</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00296"></a><span class="lineno">  296</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00297"></a><span class="lineno">  297</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt;</div>
<div class="line"><a name="l00298"></a><span class="lineno">  298</span>&#160;__host__ __device__ <span class="keyword">const</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;U, Dim, InnerContig, IndexT, PtrTraits&gt;</a></div>
<div class="line"><a name="l00299"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#ae06338d9b19c62452c2111682447f863">  299</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6c9640c365134ccc33cdb2695b016eb3">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::castResize</a>()<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00300"></a><span class="lineno">  300</span>&#160;  <span class="keywordflow">return</span> <span class="keyword">const_cast&lt;</span><a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;</a>*<span class="keyword">&gt;</span>(<span class="keyword">this</span>)-&gt;</div>
<div class="line"><a name="l00301"></a><span class="lineno">  301</span>&#160;    castResize&lt;U&gt;();</div>
<div class="line"><a name="l00302"></a><span class="lineno">  302</span>&#160;}</div>
<div class="line"><a name="l00303"></a><span class="lineno">  303</span>&#160;</div>
<div class="line"><a name="l00304"></a><span class="lineno">  304</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00305"></a><span class="lineno">  305</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00306"></a><span class="lineno">  306</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt;</div>
<div class="line"><a name="l00307"></a><span class="lineno">  307</span>&#160;__host__ __device__ <span class="keywordtype">bool</span></div>
<div class="line"><a name="l00308"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a7fbbf51f8ef6bea9cc863a86e20d994e">  308</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a7fbbf51f8ef6bea9cc863a86e20d994e">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::canCastResize</a>()<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00309"></a><span class="lineno">  309</span>&#160;  static_assert(<span class="keyword">sizeof</span>(U) &gt;= <span class="keyword">sizeof</span>(T), <span class="stringliteral">&quot;only handles greater sizes&quot;</span>);</div>
<div class="line"><a name="l00310"></a><span class="lineno">  310</span>&#160;  constexpr <span class="keywordtype">int</span> kMultiple = <span class="keyword">sizeof</span>(U) / <span class="keyword">sizeof</span>(T);</div>
<div class="line"><a name="l00311"></a><span class="lineno">  311</span>&#160;</div>
<div class="line"><a name="l00312"></a><span class="lineno">  312</span>&#160;  <span class="comment">// Ensure that the base pointer is sizeof(U) aligned</span></div>
<div class="line"><a name="l00313"></a><span class="lineno">  313</span>&#160;  <span class="keywordflow">if</span> (((uintptr_t) data_) % <span class="keyword">sizeof</span>(U) != 0) {</div>
<div class="line"><a name="l00314"></a><span class="lineno">  314</span>&#160;    <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00315"></a><span class="lineno">  315</span>&#160;  }</div>
<div class="line"><a name="l00316"></a><span class="lineno">  316</span>&#160;</div>
<div class="line"><a name="l00317"></a><span class="lineno">  317</span>&#160;  <span class="comment">// Check all outer strides</span></div>
<div class="line"><a name="l00318"></a><span class="lineno">  318</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim - 1; ++i) {</div>
<div class="line"><a name="l00319"></a><span class="lineno">  319</span>&#160;    <span class="keywordflow">if</span> (stride_[i] % kMultiple != 0) {</div>
<div class="line"><a name="l00320"></a><span class="lineno">  320</span>&#160;      <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00321"></a><span class="lineno">  321</span>&#160;    }</div>
<div class="line"><a name="l00322"></a><span class="lineno">  322</span>&#160;  }</div>
<div class="line"><a name="l00323"></a><span class="lineno">  323</span>&#160;</div>
<div class="line"><a name="l00324"></a><span class="lineno">  324</span>&#160;  <span class="comment">// Check inner size</span></div>
<div class="line"><a name="l00325"></a><span class="lineno">  325</span>&#160;  <span class="keywordflow">if</span> (size_[Dim - 1] % kMultiple != 0) {</div>
<div class="line"><a name="l00326"></a><span class="lineno">  326</span>&#160;    <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00327"></a><span class="lineno">  327</span>&#160;  }</div>
<div class="line"><a name="l00328"></a><span class="lineno">  328</span>&#160;</div>
<div class="line"><a name="l00329"></a><span class="lineno">  329</span>&#160;  <span class="keywordflow">if</span> (stride_[Dim - 1] != 1) {</div>
<div class="line"><a name="l00330"></a><span class="lineno">  330</span>&#160;    <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00331"></a><span class="lineno">  331</span>&#160;  }</div>
<div class="line"><a name="l00332"></a><span class="lineno">  332</span>&#160;</div>
<div class="line"><a name="l00333"></a><span class="lineno">  333</span>&#160;  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
<div class="line"><a name="l00334"></a><span class="lineno">  334</span>&#160;}</div>
<div class="line"><a name="l00335"></a><span class="lineno">  335</span>&#160;</div>
<div class="line"><a name="l00336"></a><span class="lineno">  336</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00337"></a><span class="lineno">  337</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00338"></a><span class="lineno">  338</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> NewIndexT&gt;</div>
<div class="line"><a name="l00339"></a><span class="lineno">  339</span>&#160;__host__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, InnerContig, NewIndexT, PtrTraits&gt;</a></div>
<div class="line"><a name="l00340"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a9f0c817e9751fe02926c2346a97f0350">  340</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a9f0c817e9751fe02926c2346a97f0350">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::castIndexType</a>()<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00341"></a><span class="lineno">  341</span>&#160;  <span class="keywordflow">if</span> (<span class="keyword">sizeof</span>(NewIndexT) &lt; <span class="keyword">sizeof</span>(IndexT)) {</div>
<div class="line"><a name="l00342"></a><span class="lineno">  342</span>&#160;    GPU_FAISS_ASSERT(this-&gt;canUseIndexType&lt;NewIndexT&gt;());</div>
<div class="line"><a name="l00343"></a><span class="lineno">  343</span>&#160;  }</div>
<div class="line"><a name="l00344"></a><span class="lineno">  344</span>&#160;</div>
<div class="line"><a name="l00345"></a><span class="lineno">  345</span>&#160;  NewIndexT newSize[Dim];</div>
<div class="line"><a name="l00346"></a><span class="lineno">  346</span>&#160;  NewIndexT newStride[Dim];</div>
<div class="line"><a name="l00347"></a><span class="lineno">  347</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim; ++i) {</div>
<div class="line"><a name="l00348"></a><span class="lineno">  348</span>&#160;    newSize[i] = (NewIndexT) size_[i];</div>
<div class="line"><a name="l00349"></a><span class="lineno">  349</span>&#160;    newStride[i] = (NewIndexT) stride_[i];</div>
<div class="line"><a name="l00350"></a><span class="lineno">  350</span>&#160;  }</div>
<div class="line"><a name="l00351"></a><span class="lineno">  351</span>&#160;</div>
<div class="line"><a name="l00352"></a><span class="lineno">  352</span>&#160;  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, InnerContig, NewIndexT, PtrTraits&gt;</a>(</div>
<div class="line"><a name="l00353"></a><span class="lineno">  353</span>&#160;    data_, newSize, newStride);</div>
<div class="line"><a name="l00354"></a><span class="lineno">  354</span>&#160;}</div>
<div class="line"><a name="l00355"></a><span class="lineno">  355</span>&#160;</div>
<div class="line"><a name="l00356"></a><span class="lineno">  356</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00357"></a><span class="lineno">  357</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00358"></a><span class="lineno">  358</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> NewIndexT&gt;</div>
<div class="line"><a name="l00359"></a><span class="lineno">  359</span>&#160;__host__ <span class="keywordtype">bool</span></div>
<div class="line"><a name="l00360"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a2ac9dc9fa8d81f2651a1be486c14ba62">  360</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2ac9dc9fa8d81f2651a1be486c14ba62">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::canUseIndexType</a>()<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00361"></a><span class="lineno">  361</span>&#160;  static_assert(<span class="keyword">sizeof</span>(<span class="keywordtype">size_t</span>) &gt;= <span class="keyword">sizeof</span>(IndexT),</div>
<div class="line"><a name="l00362"></a><span class="lineno">  362</span>&#160;                <span class="stringliteral">&quot;index size too large&quot;</span>);</div>
<div class="line"><a name="l00363"></a><span class="lineno">  363</span>&#160;  static_assert(<span class="keyword">sizeof</span>(<span class="keywordtype">size_t</span>) &gt;= <span class="keyword">sizeof</span>(NewIndexT),</div>
<div class="line"><a name="l00364"></a><span class="lineno">  364</span>&#160;                <span class="stringliteral">&quot;new index size too large&quot;</span>);</div>
<div class="line"><a name="l00365"></a><span class="lineno">  365</span>&#160;</div>
<div class="line"><a name="l00366"></a><span class="lineno">  366</span>&#160;  <span class="comment">// Find maximum offset that can be calculated</span></div>
<div class="line"><a name="l00367"></a><span class="lineno">  367</span>&#160;  <span class="comment">// FIXME: maybe also consider offset in bytes? multiply by sizeof(T)?</span></div>
<div class="line"><a name="l00368"></a><span class="lineno">  368</span>&#160;  <span class="keywordtype">size_t</span> maxOffset = 0;</div>
<div class="line"><a name="l00369"></a><span class="lineno">  369</span>&#160;</div>
<div class="line"><a name="l00370"></a><span class="lineno">  370</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim; ++i) {</div>
<div class="line"><a name="l00371"></a><span class="lineno">  371</span>&#160;    <span class="keywordtype">size_t</span> curMaxOffset = (size_t) size_[i] * (<span class="keywordtype">size_t</span>) stride_[i];</div>
<div class="line"><a name="l00372"></a><span class="lineno">  372</span>&#160;    <span class="keywordflow">if</span> (curMaxOffset &gt; maxOffset) {</div>
<div class="line"><a name="l00373"></a><span class="lineno">  373</span>&#160;      maxOffset = curMaxOffset;</div>
<div class="line"><a name="l00374"></a><span class="lineno">  374</span>&#160;    }</div>
<div class="line"><a name="l00375"></a><span class="lineno">  375</span>&#160;  }</div>
<div class="line"><a name="l00376"></a><span class="lineno">  376</span>&#160;</div>
<div class="line"><a name="l00377"></a><span class="lineno">  377</span>&#160;  <span class="keywordflow">if</span> (maxOffset &gt; (<span class="keywordtype">size_t</span>) std::numeric_limits&lt;NewIndexT&gt;::max()) {</div>
<div class="line"><a name="l00378"></a><span class="lineno">  378</span>&#160;    <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00379"></a><span class="lineno">  379</span>&#160;  }</div>
<div class="line"><a name="l00380"></a><span class="lineno">  380</span>&#160;</div>
<div class="line"><a name="l00381"></a><span class="lineno">  381</span>&#160;  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
<div class="line"><a name="l00382"></a><span class="lineno">  382</span>&#160;}</div>
<div class="line"><a name="l00383"></a><span class="lineno">  383</span>&#160;</div>
<div class="line"><a name="l00384"></a><span class="lineno">  384</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00385"></a><span class="lineno">  385</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00386"></a><span class="lineno">  386</span>&#160;__host__ __device__ <span class="keywordtype">size_t</span></div>
<div class="line"><a name="l00387"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">  387</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::numElements</a>()<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00388"></a><span class="lineno">  388</span>&#160;  <span class="keywordtype">size_t</span> size = (size_t) getSize(0);</div>
<div class="line"><a name="l00389"></a><span class="lineno">  389</span>&#160;</div>
<div class="line"><a name="l00390"></a><span class="lineno">  390</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 1; i &lt; Dim; ++i) {</div>
<div class="line"><a name="l00391"></a><span class="lineno">  391</span>&#160;    size *= (size_t) getSize(i);</div>
<div class="line"><a name="l00392"></a><span class="lineno">  392</span>&#160;  }</div>
<div class="line"><a name="l00393"></a><span class="lineno">  393</span>&#160;</div>
<div class="line"><a name="l00394"></a><span class="lineno">  394</span>&#160;  <span class="keywordflow">return</span> size;</div>
<div class="line"><a name="l00395"></a><span class="lineno">  395</span>&#160;}</div>
<div class="line"><a name="l00396"></a><span class="lineno">  396</span>&#160;</div>
<div class="line"><a name="l00397"></a><span class="lineno">  397</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00398"></a><span class="lineno">  398</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00399"></a><span class="lineno">  399</span>&#160;__host__ __device__ <span class="keywordtype">bool</span></div>
<div class="line"><a name="l00400"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a09019c54911db891c9321fd3b34509c2">  400</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a09019c54911db891c9321fd3b34509c2">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::isContiguous</a>()<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00401"></a><span class="lineno">  401</span>&#160;  <span class="keywordtype">long</span> prevSize = 1;</div>
<div class="line"><a name="l00402"></a><span class="lineno">  402</span>&#160;</div>
<div class="line"><a name="l00403"></a><span class="lineno">  403</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = Dim - 1; i &gt;= 0; --i) {</div>
<div class="line"><a name="l00404"></a><span class="lineno">  404</span>&#160;    <span class="keywordflow">if</span> (getSize(i) != (IndexT) 1) {</div>
<div class="line"><a name="l00405"></a><span class="lineno">  405</span>&#160;      <span class="keywordflow">if</span> (getStride(i) == prevSize) {</div>
<div class="line"><a name="l00406"></a><span class="lineno">  406</span>&#160;        prevSize *= getSize(i);</div>
<div class="line"><a name="l00407"></a><span class="lineno">  407</span>&#160;      } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00408"></a><span class="lineno">  408</span>&#160;        <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00409"></a><span class="lineno">  409</span>&#160;      }</div>
<div class="line"><a name="l00410"></a><span class="lineno">  410</span>&#160;    }</div>
<div class="line"><a name="l00411"></a><span class="lineno">  411</span>&#160;  }</div>
<div class="line"><a name="l00412"></a><span class="lineno">  412</span>&#160;</div>
<div class="line"><a name="l00413"></a><span class="lineno">  413</span>&#160;  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
<div class="line"><a name="l00414"></a><span class="lineno">  414</span>&#160;}</div>
<div class="line"><a name="l00415"></a><span class="lineno">  415</span>&#160;</div>
<div class="line"><a name="l00416"></a><span class="lineno">  416</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00417"></a><span class="lineno">  417</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00418"></a><span class="lineno">  418</span>&#160;__host__ __device__ <span class="keywordtype">bool</span></div>
<div class="line"><a name="l00419"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a663e3829c395372acdc8d2e71c0bdabe">  419</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::isConsistentlySized</a>(<span class="keywordtype">int</span> i)<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00420"></a><span class="lineno">  420</span>&#160;  <span class="keywordflow">if</span> (i == 0 &amp;&amp; getStride(i) &gt; 0 &amp;&amp; getSize(i) &gt; 0) {</div>
<div class="line"><a name="l00421"></a><span class="lineno">  421</span>&#160;    <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
<div class="line"><a name="l00422"></a><span class="lineno">  422</span>&#160;  } <span class="keywordflow">else</span> <span class="keywordflow">if</span> ((i &gt; 0) &amp;&amp; (i &lt; Dim) &amp;&amp; (getStride(i) &gt; 0) &amp;&amp;</div>
<div class="line"><a name="l00423"></a><span class="lineno">  423</span>&#160;             ((getStride(i - 1) / getStride(i)) &gt;= getSize(i))) {</div>
<div class="line"><a name="l00424"></a><span class="lineno">  424</span>&#160;    <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
<div class="line"><a name="l00425"></a><span class="lineno">  425</span>&#160;  }</div>
<div class="line"><a name="l00426"></a><span class="lineno">  426</span>&#160;</div>
<div class="line"><a name="l00427"></a><span class="lineno">  427</span>&#160;  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00428"></a><span class="lineno">  428</span>&#160;}</div>
<div class="line"><a name="l00429"></a><span class="lineno">  429</span>&#160;</div>
<div class="line"><a name="l00430"></a><span class="lineno">  430</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00431"></a><span class="lineno">  431</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00432"></a><span class="lineno">  432</span>&#160;__host__ __device__ <span class="keywordtype">bool</span></div>
<div class="line"><a name="l00433"></a><span class="lineno">  433</span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::isConsistentlySized</a>()<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00434"></a><span class="lineno">  434</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim; ++i) {</div>
<div class="line"><a name="l00435"></a><span class="lineno">  435</span>&#160;    <span class="keywordflow">if</span> (!isConsistentlySized(i)) {</div>
<div class="line"><a name="l00436"></a><span class="lineno">  436</span>&#160;      <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00437"></a><span class="lineno">  437</span>&#160;    }</div>
<div class="line"><a name="l00438"></a><span class="lineno">  438</span>&#160;  }</div>
<div class="line"><a name="l00439"></a><span class="lineno">  439</span>&#160;</div>
<div class="line"><a name="l00440"></a><span class="lineno">  440</span>&#160;  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
<div class="line"><a name="l00441"></a><span class="lineno">  441</span>&#160;}</div>
<div class="line"><a name="l00442"></a><span class="lineno">  442</span>&#160;</div>
<div class="line"><a name="l00443"></a><span class="lineno">  443</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00444"></a><span class="lineno">  444</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00445"></a><span class="lineno">  445</span>&#160;__host__ __device__ <span class="keywordtype">bool</span></div>
<div class="line"><a name="l00446"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a3f4e3c6afdf4a03308756b6ae6462c38">  446</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a3f4e3c6afdf4a03308756b6ae6462c38">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::isContiguousDim</a>(<span class="keywordtype">int</span> i)<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00447"></a><span class="lineno">  447</span>&#160;  <span class="keywordflow">return</span> (i == Dim - 1) || <span class="comment">// just in case</span></div>
<div class="line"><a name="l00448"></a><span class="lineno">  448</span>&#160;    ((i &lt; Dim - 1) &amp;&amp;</div>
<div class="line"><a name="l00449"></a><span class="lineno">  449</span>&#160;     ((getStride(i) / getStride(i + 1)) == getSize(i + 1)));</div>
<div class="line"><a name="l00450"></a><span class="lineno">  450</span>&#160;}</div>
<div class="line"><a name="l00451"></a><span class="lineno">  451</span>&#160;</div>
<div class="line"><a name="l00452"></a><span class="lineno">  452</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00453"></a><span class="lineno">  453</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00454"></a><span class="lineno">  454</span>&#160;__host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;</a></div>
<div class="line"><a name="l00455"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a82a3484a6458e3e95bb91d320f2c6731">  455</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a82a3484a6458e3e95bb91d320f2c6731">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::transpose</a>(<span class="keywordtype">int</span> dim1,</div>
<div class="line"><a name="l00456"></a><span class="lineno">  456</span>&#160;                                                     <span class="keywordtype">int</span> dim2)<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00457"></a><span class="lineno">  457</span>&#160;  GPU_FAISS_ASSERT(dim1 &gt;= 0 &amp;&amp; dim1 &lt; Dim);</div>
<div class="line"><a name="l00458"></a><span class="lineno">  458</span>&#160;  GPU_FAISS_ASSERT(dim1 &gt;= 0 &amp;&amp; dim2 &lt; Dim);</div>
<div class="line"><a name="l00459"></a><span class="lineno">  459</span>&#160;</div>
<div class="line"><a name="l00460"></a><span class="lineno">  460</span>&#160;  <span class="comment">// If a tensor is innermost contiguous, one cannot transpose the innermost</span></div>
<div class="line"><a name="l00461"></a><span class="lineno">  461</span>&#160;  <span class="comment">// dimension</span></div>
<div class="line"><a name="l00462"></a><span class="lineno">  462</span>&#160;  <span class="keywordflow">if</span> (InnerContig) {</div>
<div class="line"><a name="l00463"></a><span class="lineno">  463</span>&#160;    GPU_FAISS_ASSERT(dim1 != Dim - 1 &amp;&amp; dim2 != Dim - 1);</div>
<div class="line"><a name="l00464"></a><span class="lineno">  464</span>&#160;  }</div>
<div class="line"><a name="l00465"></a><span class="lineno">  465</span>&#160;</div>
<div class="line"><a name="l00466"></a><span class="lineno">  466</span>&#160;  IndexT newSize[Dim];</div>
<div class="line"><a name="l00467"></a><span class="lineno">  467</span>&#160;  IndexT newStride[Dim];</div>
<div class="line"><a name="l00468"></a><span class="lineno">  468</span>&#160;</div>
<div class="line"><a name="l00469"></a><span class="lineno">  469</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim; ++i) {</div>
<div class="line"><a name="l00470"></a><span class="lineno">  470</span>&#160;    newSize[i] = size_[i];</div>
<div class="line"><a name="l00471"></a><span class="lineno">  471</span>&#160;    newStride[i] = stride_[i];</div>
<div class="line"><a name="l00472"></a><span class="lineno">  472</span>&#160;  }</div>
<div class="line"><a name="l00473"></a><span class="lineno">  473</span>&#160;</div>
<div class="line"><a name="l00474"></a><span class="lineno">  474</span>&#160;  IndexT tmp = newSize[dim1];</div>
<div class="line"><a name="l00475"></a><span class="lineno">  475</span>&#160;  newSize[dim1] = newSize[dim2];</div>
<div class="line"><a name="l00476"></a><span class="lineno">  476</span>&#160;  newSize[dim2] = tmp;</div>
<div class="line"><a name="l00477"></a><span class="lineno">  477</span>&#160;</div>
<div class="line"><a name="l00478"></a><span class="lineno">  478</span>&#160;  tmp = newStride[dim1];</div>
<div class="line"><a name="l00479"></a><span class="lineno">  479</span>&#160;  newStride[dim1] = newStride[dim2];</div>
<div class="line"><a name="l00480"></a><span class="lineno">  480</span>&#160;  newStride[dim2] = tmp;</div>
<div class="line"><a name="l00481"></a><span class="lineno">  481</span>&#160;</div>
<div class="line"><a name="l00482"></a><span class="lineno">  482</span>&#160;  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;</a>(data_, newSize, newStride);</div>
<div class="line"><a name="l00483"></a><span class="lineno">  483</span>&#160;}</div>
<div class="line"><a name="l00484"></a><span class="lineno">  484</span>&#160;</div>
<div class="line"><a name="l00485"></a><span class="lineno">  485</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00486"></a><span class="lineno">  486</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00487"></a><span class="lineno">  487</span>&#160;<span class="keyword">template</span> &lt;<span class="keywordtype">int</span> NewDim&gt;</div>
<div class="line"><a name="l00488"></a><span class="lineno">  488</span>&#160;__host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, NewDim, InnerContig, IndexT, PtrTraits&gt;</a></div>
<div class="line"><a name="l00489"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a309eb97e9c6dbfdecf383343c072d38c">  489</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a309eb97e9c6dbfdecf383343c072d38c">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::upcastOuter</a>() {</div>
<div class="line"><a name="l00490"></a><span class="lineno">  490</span>&#160;  <span class="comment">// Can only create tensors of greater dimension</span></div>
<div class="line"><a name="l00491"></a><span class="lineno">  491</span>&#160;  static_assert(NewDim &gt; Dim, <span class="stringliteral">&quot;Can only upcast to greater dim&quot;</span>);</div>
<div class="line"><a name="l00492"></a><span class="lineno">  492</span>&#160;</div>
<div class="line"><a name="l00493"></a><span class="lineno">  493</span>&#160;  IndexT newSize[NewDim];</div>
<div class="line"><a name="l00494"></a><span class="lineno">  494</span>&#160;  IndexT newStride[NewDim];</div>
<div class="line"><a name="l00495"></a><span class="lineno">  495</span>&#160;</div>
<div class="line"><a name="l00496"></a><span class="lineno">  496</span>&#160;  <span class="keywordtype">int</span> shift = NewDim - Dim;</div>
<div class="line"><a name="l00497"></a><span class="lineno">  497</span>&#160;</div>
<div class="line"><a name="l00498"></a><span class="lineno">  498</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; NewDim; ++i) {</div>
<div class="line"><a name="l00499"></a><span class="lineno">  499</span>&#160;    <span class="keywordflow">if</span> (i &lt; shift) {</div>
<div class="line"><a name="l00500"></a><span class="lineno">  500</span>&#160;      <span class="comment">// These are the extended dimensions</span></div>
<div class="line"><a name="l00501"></a><span class="lineno">  501</span>&#160;      newSize[i] = (IndexT) 1;</div>
<div class="line"><a name="l00502"></a><span class="lineno">  502</span>&#160;      newStride[i] = size_[0] * stride_[0];</div>
<div class="line"><a name="l00503"></a><span class="lineno">  503</span>&#160;    } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00504"></a><span class="lineno">  504</span>&#160;      <span class="comment">// Shift the remaining dimensions</span></div>
<div class="line"><a name="l00505"></a><span class="lineno">  505</span>&#160;      newSize[i] = size_[i - shift];</div>
<div class="line"><a name="l00506"></a><span class="lineno">  506</span>&#160;      newStride[i] = stride_[i - shift];</div>
<div class="line"><a name="l00507"></a><span class="lineno">  507</span>&#160;    }</div>
<div class="line"><a name="l00508"></a><span class="lineno">  508</span>&#160;  }</div>
<div class="line"><a name="l00509"></a><span class="lineno">  509</span>&#160;</div>
<div class="line"><a name="l00510"></a><span class="lineno">  510</span>&#160;  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, NewDim, InnerContig, IndexT, PtrTraits&gt;</a>(</div>
<div class="line"><a name="l00511"></a><span class="lineno">  511</span>&#160;    data_, newSize, newStride);</div>
<div class="line"><a name="l00512"></a><span class="lineno">  512</span>&#160;}</div>
<div class="line"><a name="l00513"></a><span class="lineno">  513</span>&#160;</div>
<div class="line"><a name="l00514"></a><span class="lineno">  514</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00515"></a><span class="lineno">  515</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00516"></a><span class="lineno">  516</span>&#160;<span class="keyword">template</span> &lt;<span class="keywordtype">int</span> NewDim&gt;</div>
<div class="line"><a name="l00517"></a><span class="lineno">  517</span>&#160;__host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, NewDim, InnerContig, IndexT, PtrTraits&gt;</a></div>
<div class="line"><a name="l00518"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#aee5cf46d16344e2a055cf63adb07d24a">  518</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#aee5cf46d16344e2a055cf63adb07d24a">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::upcastInner</a>() {</div>
<div class="line"><a name="l00519"></a><span class="lineno">  519</span>&#160;  <span class="comment">// Can only create tensors of greater dimension</span></div>
<div class="line"><a name="l00520"></a><span class="lineno">  520</span>&#160;  static_assert(NewDim &gt; Dim, <span class="stringliteral">&quot;Can only upcast to greater dim&quot;</span>);</div>
<div class="line"><a name="l00521"></a><span class="lineno">  521</span>&#160;</div>
<div class="line"><a name="l00522"></a><span class="lineno">  522</span>&#160;  IndexT newSize[NewDim];</div>
<div class="line"><a name="l00523"></a><span class="lineno">  523</span>&#160;  IndexT newStride[NewDim];</div>
<div class="line"><a name="l00524"></a><span class="lineno">  524</span>&#160;</div>
<div class="line"><a name="l00525"></a><span class="lineno">  525</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; NewDim; ++i) {</div>
<div class="line"><a name="l00526"></a><span class="lineno">  526</span>&#160;    <span class="keywordflow">if</span> (i &lt; Dim) {</div>
<div class="line"><a name="l00527"></a><span class="lineno">  527</span>&#160;      <span class="comment">// Existing dimensions get copied over</span></div>
<div class="line"><a name="l00528"></a><span class="lineno">  528</span>&#160;      newSize[i] = size_[i];</div>
<div class="line"><a name="l00529"></a><span class="lineno">  529</span>&#160;      newStride[i] = stride_[i];</div>
<div class="line"><a name="l00530"></a><span class="lineno">  530</span>&#160;    } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00531"></a><span class="lineno">  531</span>&#160;      <span class="comment">// Extended dimensions</span></div>
<div class="line"><a name="l00532"></a><span class="lineno">  532</span>&#160;      newSize[i] = (IndexT) 1;</div>
<div class="line"><a name="l00533"></a><span class="lineno">  533</span>&#160;      newStride[i] = (IndexT) 1;</div>
<div class="line"><a name="l00534"></a><span class="lineno">  534</span>&#160;    }</div>
<div class="line"><a name="l00535"></a><span class="lineno">  535</span>&#160;  }</div>
<div class="line"><a name="l00536"></a><span class="lineno">  536</span>&#160;</div>
<div class="line"><a name="l00537"></a><span class="lineno">  537</span>&#160;  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, NewDim, InnerContig, IndexT, PtrTraits&gt;</a>(</div>
<div class="line"><a name="l00538"></a><span class="lineno">  538</span>&#160;    data_, newSize, newStride);</div>
<div class="line"><a name="l00539"></a><span class="lineno">  539</span>&#160;}</div>
<div class="line"><a name="l00540"></a><span class="lineno">  540</span>&#160;</div>
<div class="line"><a name="l00541"></a><span class="lineno">  541</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00542"></a><span class="lineno">  542</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00543"></a><span class="lineno">  543</span>&#160;<span class="keyword">template</span> &lt;<span class="keywordtype">int</span> NewDim&gt;</div>
<div class="line"><a name="l00544"></a><span class="lineno">  544</span>&#160;__host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, NewDim, InnerContig, IndexT, PtrTraits&gt;</a></div>
<div class="line"><a name="l00545"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a2185b0c1c2c06cc3a4dab6a88eb6d001">  545</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a2185b0c1c2c06cc3a4dab6a88eb6d001">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::downcastOuter</a>() {</div>
<div class="line"><a name="l00546"></a><span class="lineno">  546</span>&#160;  <span class="comment">// Can only create tensors of lesser dimension</span></div>
<div class="line"><a name="l00547"></a><span class="lineno">  547</span>&#160;  static_assert(NewDim &lt; Dim, <span class="stringliteral">&quot;Can only downcast to lesser dim&quot;</span>);</div>
<div class="line"><a name="l00548"></a><span class="lineno">  548</span>&#160;</div>
<div class="line"><a name="l00549"></a><span class="lineno">  549</span>&#160;  <span class="comment">// We can&#39;t downcast non-contiguous tensors, since it leaves</span></div>
<div class="line"><a name="l00550"></a><span class="lineno">  550</span>&#160;  <span class="comment">// garbage data in the tensor. The tensor needs to be contiguous</span></div>
<div class="line"><a name="l00551"></a><span class="lineno">  551</span>&#160;  <span class="comment">// in all of the dimensions we are collapsing (no padding in</span></div>
<div class="line"><a name="l00552"></a><span class="lineno">  552</span>&#160;  <span class="comment">// them).</span></div>
<div class="line"><a name="l00553"></a><span class="lineno">  553</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim - NewDim; ++i) {</div>
<div class="line"><a name="l00554"></a><span class="lineno">  554</span>&#160;    <span class="keywordtype">bool</span> cont = isContiguousDim(i);</div>
<div class="line"><a name="l00555"></a><span class="lineno">  555</span>&#160;    GPU_FAISS_ASSERT(cont);</div>
<div class="line"><a name="l00556"></a><span class="lineno">  556</span>&#160;  }</div>
<div class="line"><a name="l00557"></a><span class="lineno">  557</span>&#160;</div>
<div class="line"><a name="l00558"></a><span class="lineno">  558</span>&#160;  IndexT newSize[NewDim];</div>
<div class="line"><a name="l00559"></a><span class="lineno">  559</span>&#160;  IndexT newStride[NewDim];</div>
<div class="line"><a name="l00560"></a><span class="lineno">  560</span>&#160;</div>
<div class="line"><a name="l00561"></a><span class="lineno">  561</span>&#160;  <span class="keywordtype">int</span> ignoredDims = Dim - NewDim;</div>
<div class="line"><a name="l00562"></a><span class="lineno">  562</span>&#160;  IndexT collapsedSize = 1;</div>
<div class="line"><a name="l00563"></a><span class="lineno">  563</span>&#160;</div>
<div class="line"><a name="l00564"></a><span class="lineno">  564</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim; ++i) {</div>
<div class="line"><a name="l00565"></a><span class="lineno">  565</span>&#160;    <span class="keywordflow">if</span> (i &lt; ignoredDims) {</div>
<div class="line"><a name="l00566"></a><span class="lineno">  566</span>&#160;      <span class="comment">// Collapse these dimensions</span></div>
<div class="line"><a name="l00567"></a><span class="lineno">  567</span>&#160;      collapsedSize *= getSize(i);</div>
<div class="line"><a name="l00568"></a><span class="lineno">  568</span>&#160;    } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00569"></a><span class="lineno">  569</span>&#160;      <span class="comment">// Non-collapsed dimensions</span></div>
<div class="line"><a name="l00570"></a><span class="lineno">  570</span>&#160;      <span class="keywordflow">if</span> (i == ignoredDims) {</div>
<div class="line"><a name="l00571"></a><span class="lineno">  571</span>&#160;        <span class="comment">// This is the first non-collapsed dimension</span></div>
<div class="line"><a name="l00572"></a><span class="lineno">  572</span>&#160;        newSize[i - ignoredDims] = collapsedSize * getSize(i);</div>
<div class="line"><a name="l00573"></a><span class="lineno">  573</span>&#160;      } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00574"></a><span class="lineno">  574</span>&#160;        <span class="comment">// Subsequent non-collapsed dimensions</span></div>
<div class="line"><a name="l00575"></a><span class="lineno">  575</span>&#160;        newSize[i - ignoredDims] = getSize(i);</div>
<div class="line"><a name="l00576"></a><span class="lineno">  576</span>&#160;      }</div>
<div class="line"><a name="l00577"></a><span class="lineno">  577</span>&#160;</div>
<div class="line"><a name="l00578"></a><span class="lineno">  578</span>&#160;      newStride[i - ignoredDims] = getStride(i);</div>
<div class="line"><a name="l00579"></a><span class="lineno">  579</span>&#160;    }</div>
<div class="line"><a name="l00580"></a><span class="lineno">  580</span>&#160;  }</div>
<div class="line"><a name="l00581"></a><span class="lineno">  581</span>&#160;</div>
<div class="line"><a name="l00582"></a><span class="lineno">  582</span>&#160;  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, NewDim, InnerContig, IndexT, PtrTraits&gt;</a>(</div>
<div class="line"><a name="l00583"></a><span class="lineno">  583</span>&#160;    data_, newSize, newStride);</div>
<div class="line"><a name="l00584"></a><span class="lineno">  584</span>&#160;}</div>
<div class="line"><a name="l00585"></a><span class="lineno">  585</span>&#160;</div>
<div class="line"><a name="l00586"></a><span class="lineno">  586</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00587"></a><span class="lineno">  587</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00588"></a><span class="lineno">  588</span>&#160;<span class="keyword">template</span> &lt;<span class="keywordtype">int</span> NewDim&gt;</div>
<div class="line"><a name="l00589"></a><span class="lineno">  589</span>&#160;__host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, NewDim, InnerContig, IndexT, PtrTraits&gt;</a></div>
<div class="line"><a name="l00590"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a6a43125c6f429f28161d59f19eb8e5c5">  590</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6a43125c6f429f28161d59f19eb8e5c5">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::downcastInner</a>() {</div>
<div class="line"><a name="l00591"></a><span class="lineno">  591</span>&#160;  <span class="comment">// Can only create tensors of lesser dimension</span></div>
<div class="line"><a name="l00592"></a><span class="lineno">  592</span>&#160;  static_assert(NewDim &lt; Dim, <span class="stringliteral">&quot;Can only downcast to lesser dim&quot;</span>);</div>
<div class="line"><a name="l00593"></a><span class="lineno">  593</span>&#160;</div>
<div class="line"><a name="l00594"></a><span class="lineno">  594</span>&#160;  <span class="comment">// We can&#39;t downcast non-contiguous tensors, since it leaves</span></div>
<div class="line"><a name="l00595"></a><span class="lineno">  595</span>&#160;  <span class="comment">// garbage data in the tensor. The tensor needs to be contiguous</span></div>
<div class="line"><a name="l00596"></a><span class="lineno">  596</span>&#160;  <span class="comment">// in all of the dimensions we are collapsing (no padding in</span></div>
<div class="line"><a name="l00597"></a><span class="lineno">  597</span>&#160;  <span class="comment">// them).</span></div>
<div class="line"><a name="l00598"></a><span class="lineno">  598</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = NewDim; i &lt; Dim; ++i) {</div>
<div class="line"><a name="l00599"></a><span class="lineno">  599</span>&#160;    GPU_FAISS_ASSERT(isContiguousDim(i));</div>
<div class="line"><a name="l00600"></a><span class="lineno">  600</span>&#160;  }</div>
<div class="line"><a name="l00601"></a><span class="lineno">  601</span>&#160;</div>
<div class="line"><a name="l00602"></a><span class="lineno">  602</span>&#160;  IndexT newSize[NewDim];</div>
<div class="line"><a name="l00603"></a><span class="lineno">  603</span>&#160;  IndexT newStride[NewDim];</div>
<div class="line"><a name="l00604"></a><span class="lineno">  604</span>&#160;</div>
<div class="line"><a name="l00605"></a><span class="lineno">  605</span>&#160;  IndexT collapsedSize = 1;</div>
<div class="line"><a name="l00606"></a><span class="lineno">  606</span>&#160;</div>
<div class="line"><a name="l00607"></a><span class="lineno">  607</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = Dim - 1; i &gt;= 0; --i) {</div>
<div class="line"><a name="l00608"></a><span class="lineno">  608</span>&#160;    <span class="keywordflow">if</span> (i &gt;= NewDim) {</div>
<div class="line"><a name="l00609"></a><span class="lineno">  609</span>&#160;      <span class="comment">// Collapse these dimensions</span></div>
<div class="line"><a name="l00610"></a><span class="lineno">  610</span>&#160;      collapsedSize *= getSize(i);</div>
<div class="line"><a name="l00611"></a><span class="lineno">  611</span>&#160;    } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00612"></a><span class="lineno">  612</span>&#160;      <span class="comment">// Non-collapsed dimensions</span></div>
<div class="line"><a name="l00613"></a><span class="lineno">  613</span>&#160;      <span class="keywordflow">if</span> (i == NewDim - 1) {</div>
<div class="line"><a name="l00614"></a><span class="lineno">  614</span>&#160;        <span class="comment">// This is the first non-collapsed dimension</span></div>
<div class="line"><a name="l00615"></a><span class="lineno">  615</span>&#160;        newSize[i] = collapsedSize * getSize(i);</div>
<div class="line"><a name="l00616"></a><span class="lineno">  616</span>&#160;        newStride[i] = getStride(Dim - 1);</div>
<div class="line"><a name="l00617"></a><span class="lineno">  617</span>&#160;      } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00618"></a><span class="lineno">  618</span>&#160;        <span class="comment">// Subsequent non-collapsed dimensions</span></div>
<div class="line"><a name="l00619"></a><span class="lineno">  619</span>&#160;        newSize[i] = getSize(i);</div>
<div class="line"><a name="l00620"></a><span class="lineno">  620</span>&#160;        newStride[i] = getStride(i);</div>
<div class="line"><a name="l00621"></a><span class="lineno">  621</span>&#160;      }</div>
<div class="line"><a name="l00622"></a><span class="lineno">  622</span>&#160;    }</div>
<div class="line"><a name="l00623"></a><span class="lineno">  623</span>&#160;  }</div>
<div class="line"><a name="l00624"></a><span class="lineno">  624</span>&#160;</div>
<div class="line"><a name="l00625"></a><span class="lineno">  625</span>&#160;  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, NewDim, InnerContig, IndexT, PtrTraits&gt;</a>(</div>
<div class="line"><a name="l00626"></a><span class="lineno">  626</span>&#160;    data_, newSize, newStride);</div>
<div class="line"><a name="l00627"></a><span class="lineno">  627</span>&#160;}</div>
<div class="line"><a name="l00628"></a><span class="lineno">  628</span>&#160;</div>
<div class="line"><a name="l00629"></a><span class="lineno">  629</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00630"></a><span class="lineno">  630</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00631"></a><span class="lineno">  631</span>&#160;<span class="keyword">template</span> &lt;<span class="keywordtype">int</span> SubDim&gt;</div>
<div class="line"><a name="l00632"></a><span class="lineno">  632</span>&#160;__host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, SubDim, InnerContig, IndexT, PtrTraits&gt;</a></div>
<div class="line"><a name="l00633"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a74dbc09519c9c14479b2d18f2e5042e8">  633</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a35a63cfa4034a8ee14a999132d8a1828">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::view</a>(DataPtrType at) {</div>
<div class="line"><a name="l00634"></a><span class="lineno">  634</span>&#160;  static_assert(SubDim &gt;= 1 &amp;&amp; SubDim &lt; Dim,</div>
<div class="line"><a name="l00635"></a><span class="lineno">  635</span>&#160;                <span class="stringliteral">&quot;can only create view of lesser dim&quot;</span>);</div>
<div class="line"><a name="l00636"></a><span class="lineno">  636</span>&#160;</div>
<div class="line"><a name="l00637"></a><span class="lineno">  637</span>&#160;  IndexT viewSizes[SubDim];</div>
<div class="line"><a name="l00638"></a><span class="lineno">  638</span>&#160;  IndexT viewStrides[SubDim];</div>
<div class="line"><a name="l00639"></a><span class="lineno">  639</span>&#160;</div>
<div class="line"><a name="l00640"></a><span class="lineno">  640</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; SubDim; ++i) {</div>
<div class="line"><a name="l00641"></a><span class="lineno">  641</span>&#160;    viewSizes[i] = size_[Dim - SubDim + i];</div>
<div class="line"><a name="l00642"></a><span class="lineno">  642</span>&#160;    viewStrides[i] = stride_[Dim - SubDim + i];</div>
<div class="line"><a name="l00643"></a><span class="lineno">  643</span>&#160;  }</div>
<div class="line"><a name="l00644"></a><span class="lineno">  644</span>&#160;</div>
<div class="line"><a name="l00645"></a><span class="lineno">  645</span>&#160;  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, SubDim, InnerContig, IndexT, PtrTraits&gt;</a>(</div>
<div class="line"><a name="l00646"></a><span class="lineno">  646</span>&#160;    at, viewSizes, viewStrides);</div>
<div class="line"><a name="l00647"></a><span class="lineno">  647</span>&#160;}</div>
<div class="line"><a name="l00648"></a><span class="lineno">  648</span>&#160;</div>
<div class="line"><a name="l00649"></a><span class="lineno">  649</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00650"></a><span class="lineno">  650</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00651"></a><span class="lineno">  651</span>&#160;<span class="keyword">template</span> &lt;<span class="keywordtype">int</span> SubDim&gt;</div>
<div class="line"><a name="l00652"></a><span class="lineno">  652</span>&#160;__host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, SubDim, InnerContig, IndexT, PtrTraits&gt;</a></div>
<div class="line"><a name="l00653"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a35a63cfa4034a8ee14a999132d8a1828">  653</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a35a63cfa4034a8ee14a999132d8a1828">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::view</a>() {</div>
<div class="line"><a name="l00654"></a><span class="lineno">  654</span>&#160;  <span class="keywordflow">return</span> view&lt;SubDim&gt;(data_);</div>
<div class="line"><a name="l00655"></a><span class="lineno">  655</span>&#160;}</div>
<div class="line"><a name="l00656"></a><span class="lineno">  656</span>&#160;</div>
<div class="line"><a name="l00657"></a><span class="lineno">  657</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00658"></a><span class="lineno">  658</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00659"></a><span class="lineno">  659</span>&#160;__host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;</a></div>
<div class="line"><a name="l00660"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#ac2d0fc7199901a8e0788b58f0970b133">  660</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ac2d0fc7199901a8e0788b58f0970b133">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::narrowOutermost</a>(IndexT start,</div>
<div class="line"><a name="l00661"></a><span class="lineno">  661</span>&#160;                                                                IndexT size) {</div>
<div class="line"><a name="l00662"></a><span class="lineno">  662</span>&#160;  <span class="keywordflow">return</span> this-&gt;narrow(0, start, size);</div>
<div class="line"><a name="l00663"></a><span class="lineno">  663</span>&#160;}</div>
<div class="line"><a name="l00664"></a><span class="lineno">  664</span>&#160;</div>
<div class="line"><a name="l00665"></a><span class="lineno">  665</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00666"></a><span class="lineno">  666</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00667"></a><span class="lineno">  667</span>&#160;__host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;</a></div>
<div class="line"><a name="l00668"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#ab6db6bf86dd0f7e877af3a6ae2100fe3">  668</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#ab6db6bf86dd0f7e877af3a6ae2100fe3">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::narrow</a>(<span class="keywordtype">int</span> dim,</div>
<div class="line"><a name="l00669"></a><span class="lineno">  669</span>&#160;                                                       IndexT start,</div>
<div class="line"><a name="l00670"></a><span class="lineno">  670</span>&#160;                                                       IndexT size) {</div>
<div class="line"><a name="l00671"></a><span class="lineno">  671</span>&#160;  DataPtrType newData = data_;</div>
<div class="line"><a name="l00672"></a><span class="lineno">  672</span>&#160;</div>
<div class="line"><a name="l00673"></a><span class="lineno">  673</span>&#160;  GPU_FAISS_ASSERT(start &gt;= 0 &amp;&amp;</div>
<div class="line"><a name="l00674"></a><span class="lineno">  674</span>&#160;                   start &lt; size_[dim] &amp;&amp;</div>
<div class="line"><a name="l00675"></a><span class="lineno">  675</span>&#160;                   (start + size) &lt;= size_[dim]);</div>
<div class="line"><a name="l00676"></a><span class="lineno">  676</span>&#160;</div>
<div class="line"><a name="l00677"></a><span class="lineno">  677</span>&#160;  <span class="keywordflow">if</span> (start &gt; 0) {</div>
<div class="line"><a name="l00678"></a><span class="lineno">  678</span>&#160;    newData += (size_t) start * stride_[dim];</div>
<div class="line"><a name="l00679"></a><span class="lineno">  679</span>&#160;  }</div>
<div class="line"><a name="l00680"></a><span class="lineno">  680</span>&#160;</div>
<div class="line"><a name="l00681"></a><span class="lineno">  681</span>&#160;  IndexT newSize[Dim];</div>
<div class="line"><a name="l00682"></a><span class="lineno">  682</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; Dim; ++i) {</div>
<div class="line"><a name="l00683"></a><span class="lineno">  683</span>&#160;    <span class="keywordflow">if</span> (i == dim) {</div>
<div class="line"><a name="l00684"></a><span class="lineno">  684</span>&#160;      GPU_FAISS_ASSERT(start + size &lt;= size_[dim]);</div>
<div class="line"><a name="l00685"></a><span class="lineno">  685</span>&#160;      newSize[i] = size;</div>
<div class="line"><a name="l00686"></a><span class="lineno">  686</span>&#160;    } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00687"></a><span class="lineno">  687</span>&#160;      newSize[i] = size_[i];</div>
<div class="line"><a name="l00688"></a><span class="lineno">  688</span>&#160;    }</div>
<div class="line"><a name="l00689"></a><span class="lineno">  689</span>&#160;  }</div>
<div class="line"><a name="l00690"></a><span class="lineno">  690</span>&#160;</div>
<div class="line"><a name="l00691"></a><span class="lineno">  691</span>&#160;  <span class="comment">// If we were innermost contiguous before, we are still innermost contiguous</span></div>
<div class="line"><a name="l00692"></a><span class="lineno">  692</span>&#160;  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;</a>(newData, newSize, stride_);</div>
<div class="line"><a name="l00693"></a><span class="lineno">  693</span>&#160;}</div>
<div class="line"><a name="l00694"></a><span class="lineno">  694</span>&#160;</div>
<div class="line"><a name="l00695"></a><span class="lineno">  695</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> Dim, <span class="keywordtype">bool</span> InnerContig,</div>
<div class="line"><a name="l00696"></a><span class="lineno">  696</span>&#160;          <span class="keyword">typename</span> IndexT, <span class="keyword">template</span> &lt;<span class="keyword">typename</span> U&gt; <span class="keyword">class </span>PtrTraits&gt;</div>
<div class="line"><a name="l00697"></a><span class="lineno">  697</span>&#160;<span class="keyword">template</span> &lt;<span class="keywordtype">int</span> NewDim&gt;</div>
<div class="line"><a name="l00698"></a><span class="lineno">  698</span>&#160;__host__ __device__ <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, NewDim, InnerContig, IndexT, PtrTraits&gt;</a></div>
<div class="line"><a name="l00699"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1Tensor.html#a665d97851f0929cad7fc76f945b64c97">  699</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a35a63cfa4034a8ee14a999132d8a1828">Tensor&lt;T, Dim, InnerContig, IndexT, PtrTraits&gt;::view</a>(</div>
<div class="line"><a name="l00700"></a><span class="lineno">  700</span>&#160;  std::initializer_list&lt;IndexT&gt; sizes) {</div>
<div class="line"><a name="l00701"></a><span class="lineno">  701</span>&#160;  GPU_FAISS_ASSERT(this-&gt;isContiguous());</div>
<div class="line"><a name="l00702"></a><span class="lineno">  702</span>&#160;</div>
<div class="line"><a name="l00703"></a><span class="lineno">  703</span>&#160;  GPU_FAISS_ASSERT(sizes.size() == NewDim);</div>
<div class="line"><a name="l00704"></a><span class="lineno">  704</span>&#160;</div>
<div class="line"><a name="l00705"></a><span class="lineno">  705</span>&#160;  <span class="comment">// The total size of the new view must be the same as the total size</span></div>
<div class="line"><a name="l00706"></a><span class="lineno">  706</span>&#160;  <span class="comment">// of the old view</span></div>
<div class="line"><a name="l00707"></a><span class="lineno">  707</span>&#160;  <span class="keywordtype">size_t</span> curSize = numElements();</div>
<div class="line"><a name="l00708"></a><span class="lineno">  708</span>&#160;  <span class="keywordtype">size_t</span> newSize = 1;</div>
<div class="line"><a name="l00709"></a><span class="lineno">  709</span>&#160;</div>
<div class="line"><a name="l00710"></a><span class="lineno">  710</span>&#160;  <span class="keywordflow">for</span> (<span class="keyword">auto</span> s : sizes) {</div>
<div class="line"><a name="l00711"></a><span class="lineno">  711</span>&#160;    newSize *= s;</div>
<div class="line"><a name="l00712"></a><span class="lineno">  712</span>&#160;  }</div>
<div class="line"><a name="l00713"></a><span class="lineno">  713</span>&#160;</div>
<div class="line"><a name="l00714"></a><span class="lineno">  714</span>&#160;  GPU_FAISS_ASSERT(curSize == newSize);</div>
<div class="line"><a name="l00715"></a><span class="lineno">  715</span>&#160;  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;T, NewDim, true, IndexT, PtrTraits&gt;</a>(data(), sizes);</div>
<div class="line"><a name="l00716"></a><span class="lineno">  716</span>&#160;}</div>
<div class="line"><a name="l00717"></a><span class="lineno">  717</span>&#160;</div>
<div class="line"><a name="l00718"></a><span class="lineno">  718</span>&#160;} } <span class="comment">// namespace</span></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a309eb97e9c6dbfdecf383343c072d38c"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a309eb97e9c6dbfdecf383343c072d38c">faiss::gpu::Tensor::upcastOuter</a></div><div class="ttdeci">__host__ __device__ Tensor&lt; T, NewDim, InnerContig, IndexT, PtrTraits &gt; upcastOuter()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00489">Tensor-inl.cuh:489</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a9f0c817e9751fe02926c2346a97f0350"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a9f0c817e9751fe02926c2346a97f0350">faiss::gpu::Tensor::castIndexType</a></div><div class="ttdeci">__host__ Tensor&lt; T, Dim, InnerContig, NewIndexT, PtrTraits &gt; castIndexType() const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00340">Tensor-inl.cuh:340</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a3f4e3c6afdf4a03308756b6ae6462c38"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a3f4e3c6afdf4a03308756b6ae6462c38">faiss::gpu::Tensor::isContiguousDim</a></div><div class="ttdeci">__host__ __device__ bool isContiguousDim(int i) const </div><div class="ttdoc">Returns true if the given dimension index has no padding. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00446">Tensor-inl.cuh:446</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a2894f8fdfab8ec3245364a6f9e8a5259"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a2894f8fdfab8ec3245364a6f9e8a5259">faiss::gpu::Tensor::cast</a></div><div class="ttdeci">__host__ __device__ Tensor&lt; U, Dim, InnerContig, IndexT, PtrTraits &gt; cast()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00252">Tensor-inl.cuh:252</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a0ba9ab7c1676b7a41a6e6b2e5a490d2f"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a0ba9ab7c1676b7a41a6e6b2e5a490d2f">faiss::gpu::Tensor::numElements</a></div><div class="ttdeci">__host__ __device__ size_t numElements() const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00387">Tensor-inl.cuh:387</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a2185b0c1c2c06cc3a4dab6a88eb6d001"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a2185b0c1c2c06cc3a4dab6a88eb6d001">faiss::gpu::Tensor::downcastOuter</a></div><div class="ttdeci">__host__ __device__ Tensor&lt; T, NewDim, InnerContig, IndexT, PtrTraits &gt; downcastOuter()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00545">Tensor-inl.cuh:545</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a7fbbf51f8ef6bea9cc863a86e20d994e"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a7fbbf51f8ef6bea9cc863a86e20d994e">faiss::gpu::Tensor::canCastResize</a></div><div class="ttdeci">__host__ __device__ bool canCastResize() const </div><div class="ttdoc">Returns true if we can castResize() this tensor to the new type. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00308">Tensor-inl.cuh:308</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a2ec506a25e46cf7001060a6ba5ae3b94"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a2ec506a25e46cf7001060a6ba5ae3b94">faiss::gpu::Tensor::data_</a></div><div class="ttdeci">DataPtrType data_</div><div class="ttdoc">Raw pointer to where the tensor data begins. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00343">Tensor.cuh:343</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a8ae7b3f95991125a5648c3b78afd40bd"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a8ae7b3f95991125a5648c3b78afd40bd">faiss::gpu::Tensor::Tensor</a></div><div class="ttdeci">__host__ __device__ Tensor()</div><div class="ttdoc">Default constructor. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00019">Tensor-inl.cuh:19</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_aee5cf46d16344e2a055cf63adb07d24a"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#aee5cf46d16344e2a055cf63adb07d24a">faiss::gpu::Tensor::upcastInner</a></div><div class="ttdeci">__host__ __device__ Tensor&lt; T, NewDim, InnerContig, IndexT, PtrTraits &gt; upcastInner()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00518">Tensor-inl.cuh:518</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_ac2d0fc7199901a8e0788b58f0970b133"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#ac2d0fc7199901a8e0788b58f0970b133">faiss::gpu::Tensor::narrowOutermost</a></div><div class="ttdeci">__host__ __device__ Tensor&lt; T, Dim, InnerContig, IndexT, PtrTraits &gt; narrowOutermost(IndexT start, IndexT size)</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00660">Tensor-inl.cuh:660</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_af4b8fe4b632cdca51ee7972ed93fc3fa"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#af4b8fe4b632cdca51ee7972ed93fc3fa">faiss::gpu::Tensor::stride_</a></div><div class="ttdeci">IndexT stride_[Dim]</div><div class="ttdoc">Array of strides (in sizeof(T) terms) per each dimension. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00346">Tensor.cuh:346</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a09019c54911db891c9321fd3b34509c2"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a09019c54911db891c9321fd3b34509c2">faiss::gpu::Tensor::isContiguous</a></div><div class="ttdeci">__host__ __device__ bool isContiguous() const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00400">Tensor-inl.cuh:400</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_abc0ecc4f882ee09632b5a06be0619adb"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#abc0ecc4f882ee09632b5a06be0619adb">faiss::gpu::Tensor::sizes</a></div><div class="ttdeci">__host__ __device__ const IndexT * sizes() const </div><div class="ttdoc">Returns the size array. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00244">Tensor.cuh:244</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6dc00c182a92389b74c89ba7fcab40d3"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6dc00c182a92389b74c89ba7fcab40d3">faiss::gpu::Tensor::copyFrom</a></div><div class="ttdeci">__host__ void copyFrom(Tensor&lt; T, Dim, InnerContig, IndexT, PtrTraits &gt; &amp;t, cudaStream_t stream)</div><div class="ttdoc">Copies a tensor into ourselves; sizes must match. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00131">Tensor-inl.cuh:131</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_ad96fbf0f5e7c06a1031b8b18f7fc01d7"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#ad96fbf0f5e7c06a1031b8b18f7fc01d7">faiss::gpu::Tensor::size_</a></div><div class="ttdeci">IndexT size_[Dim]</div><div class="ttdoc">Size per each dimension. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00349">Tensor.cuh:349</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a0d831a352531281e06250cc6fe52a38a"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a0d831a352531281e06250cc6fe52a38a">faiss::gpu::Tensor::operator=</a></div><div class="ttdeci">__host__ __device__ Tensor&lt; T, Dim, InnerContig, IndexT, PtrTraits &gt; &amp; operator=(Tensor&lt; T, Dim, InnerContig, IndexT, PtrTraits &gt; &amp;t)</div><div class="ttdoc">Assignment. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00049">Tensor-inl.cuh:49</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a87a777247486756e99060547a3cc833a"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a87a777247486756e99060547a3cc833a">faiss::gpu::Tensor::strides</a></div><div class="ttdeci">__host__ __device__ const IndexT * strides() const </div><div class="ttdoc">Returns the stride array. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00249">Tensor.cuh:249</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6699c311648457f257afa340c61f417c"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">faiss::gpu::Tensor::getSize</a></div><div class="ttdeci">__host__ __device__ IndexT getSize(int i) const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00223">Tensor.cuh:223</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a22c1e45f81f7f9e5427e2eed19f9cd11"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a22c1e45f81f7f9e5427e2eed19f9cd11">faiss::gpu::Tensor::isSameSize</a></div><div class="ttdeci">__host__ __device__ bool isSameSize(const Tensor&lt; OtherT, OtherDim, InnerContig, IndexT, PtrTraits &gt; &amp;rhs) const </div><div class="ttdoc">Returns true if the two tensors are of the same dimensionality and size. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00233">Tensor-inl.cuh:233</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6a43125c6f429f28161d59f19eb8e5c5"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6a43125c6f429f28161d59f19eb8e5c5">faiss::gpu::Tensor::downcastInner</a></div><div class="ttdeci">__host__ __device__ Tensor&lt; T, NewDim, InnerContig, IndexT, PtrTraits &gt; downcastInner()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00590">Tensor-inl.cuh:590</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_ab6db6bf86dd0f7e877af3a6ae2100fe3"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#ab6db6bf86dd0f7e877af3a6ae2100fe3">faiss::gpu::Tensor::narrow</a></div><div class="ttdeci">__host__ __device__ Tensor&lt; T, Dim, InnerContig, IndexT, PtrTraits &gt; narrow(int dim, IndexT start, IndexT size)</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00668">Tensor-inl.cuh:668</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a50411ce4d0fa32ef715e3321b6e33212"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">faiss::gpu::Tensor::data</a></div><div class="ttdeci">__host__ __device__ DataPtrType data()</div><div class="ttdoc">Returns a raw pointer to the start of our data. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00175">Tensor.cuh:175</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6cc21376070a03d77661d6e333972c6a"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6cc21376070a03d77661d6e333972c6a">faiss::gpu::Tensor::copyTo</a></div><div class="ttdeci">__host__ void copyTo(Tensor&lt; T, Dim, InnerContig, IndexT, PtrTraits &gt; &amp;t, cudaStream_t stream)</div><div class="ttdoc">Copies ourselves into a tensor; sizes must match. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00170">Tensor-inl.cuh:170</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html">faiss::gpu::Tensor</a></div><div class="ttdoc">Our tensor type. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00029">Tensor.cuh:29</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a2ac9dc9fa8d81f2651a1be486c14ba62"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a2ac9dc9fa8d81f2651a1be486c14ba62">faiss::gpu::Tensor::canUseIndexType</a></div><div class="ttdeci">__host__ bool canUseIndexType() const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00360">Tensor-inl.cuh:360</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a82a3484a6458e3e95bb91d320f2c6731"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a82a3484a6458e3e95bb91d320f2c6731">faiss::gpu::Tensor::transpose</a></div><div class="ttdeci">__host__ __device__ Tensor&lt; T, Dim, InnerContig, IndexT, PtrTraits &gt; transpose(int dim1, int dim2) const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00455">Tensor-inl.cuh:455</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a0b8bba630f7a1fa217f90b20d298420a"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a0b8bba630f7a1fa217f90b20d298420a">faiss::gpu::Tensor::getStride</a></div><div class="ttdeci">__host__ __device__ IndexT getStride(int i) const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00229">Tensor.cuh:229</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6c9640c365134ccc33cdb2695b016eb3"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6c9640c365134ccc33cdb2695b016eb3">faiss::gpu::Tensor::castResize</a></div><div class="ttdeci">__host__ __device__ Tensor&lt; U, Dim, InnerContig, IndexT, PtrTraits &gt; castResize()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00274">Tensor-inl.cuh:274</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a35a63cfa4034a8ee14a999132d8a1828"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a35a63cfa4034a8ee14a999132d8a1828">faiss::gpu::Tensor::view</a></div><div class="ttdeci">__host__ __device__ Tensor&lt; T, SubDim, InnerContig, IndexT, PtrTraits &gt; view()</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00653">Tensor-inl.cuh:653</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a3067941f8f8f09fc73e2f06243699825"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a3067941f8f8f09fc73e2f06243699825">faiss::gpu::Tensor::isSame</a></div><div class="ttdeci">__host__ __device__ bool isSame(const Tensor&lt; OtherT, OtherDim, InnerContig, IndexT, PtrTraits &gt; &amp;rhs) const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00210">Tensor-inl.cuh:210</a></div></div>
</div><!-- fragment --></div><!-- contents -->
<!-- start footer part -->
<hr class="footer"/><address class="footer"><small>
Generated by &#160;<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/>
</a> 1.8.5
</small></address>
</body>
</html>