IVFPQ_8cu_source.html 131 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.5"/>
<title>Faiss: /data/users/matthijs/github_faiss/faiss/gpu/impl/IVFPQ.cu Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
  $(document).ready(function() { searchBox.OnSelectItem(0); });
</script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
 <tbody>
 <tr style="height: 56px;">
  <td style="padding-left: 0.5em;">
   <div id="projectname">Faiss
   </div>
  </td>
 </tr>
 </tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.5 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
  <div id="navrow1" class="tabs">
    <ul class="tablist">
      <li><a href="index.html"><span>Main&#160;Page</span></a></li>
      <li><a href="namespaces.html"><span>Namespaces</span></a></li>
      <li><a href="annotated.html"><span>Classes</span></a></li>
      <li class="current"><a href="files.html"><span>Files</span></a></li>
      <li>
        <div id="MSearchBox" class="MSearchBoxInactive">
        <span class="left">
          <img id="MSearchSelect" src="search/mag_sel.png"
               onmouseover="return searchBox.OnSearchSelectShow()"
               onmouseout="return searchBox.OnSearchSelectHide()"
               alt=""/>
          <input type="text" id="MSearchField" value="Search" accesskey="S"
               onfocus="searchBox.OnSearchFieldFocus(true)" 
               onblur="searchBox.OnSearchFieldFocus(false)" 
               onkeyup="searchBox.OnSearchFieldChange(event)"/>
          </span><span class="right">
            <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
          </span>
        </div>
      </li>
    </ul>
  </div>
  <div id="navrow2" class="tabs2">
    <ul class="tablist">
      <li><a href="files.html"><span>File&#160;List</span></a></li>
    </ul>
  </div>
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
     onmouseover="return searchBox.OnSearchSelectShow()"
     onmouseout="return searchBox.OnSearchSelectHide()"
     onkeydown="return searchBox.OnSearchSelectKey(event)">
<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark">&#160;</span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark">&#160;</span>Classes</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark">&#160;</span>Namespaces</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark">&#160;</span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark">&#160;</span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark">&#160;</span>Typedefs</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(6)"><span class="SelectionMark">&#160;</span>Enumerations</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(7)"><span class="SelectionMark">&#160;</span>Enumerator</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(8)"><span class="SelectionMark">&#160;</span>Friends</a></div>

<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0" 
        name="MSearchResults" id="MSearchResults">
</iframe>
</div>

<div id="nav-path" class="navpath">
  <ul>
<li class="navelem"><a class="el" href="dir_6b3ae6988449b0834e9596fad5d75199.html">gpu</a></li><li class="navelem"><a class="el" href="dir_49d1182a3b8dfb62757c53ae905481ad.html">impl</a></li>  </ul>
</div>
</div><!-- top -->
<div class="header">
  <div class="headertitle">
<div class="title">IVFPQ.cu</div>  </div>
</div><!--header-->
<div class="contents">
<div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">/**</span></div>
<div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment"> * Copyright (c) 2015-present, Facebook, Inc.</span></div>
<div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="comment"> * All rights reserved.</span></div>
<div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="comment"> *</span></div>
<div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="comment"> * This source code is licensed under the BSD+Patents license found in the</span></div>
<div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="comment"> * LICENSE file in the root directory of this source tree.</span></div>
<div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="comment"> */</span></div>
<div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;</div>
<div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="comment">// Copyright 2004-present Facebook. All Rights Reserved.</span></div>
<div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;</div>
<div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="preprocessor">#include &quot;IVFPQ.cuh&quot;</span></div>
<div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="preprocessor">#include &quot;../GpuResources.h&quot;</span></div>
<div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="preprocessor">#include &quot;BroadcastSum.cuh&quot;</span></div>
<div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="preprocessor">#include &quot;Distance.cuh&quot;</span></div>
<div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="preprocessor">#include &quot;FlatIndex.cuh&quot;</span></div>
<div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="preprocessor">#include &quot;InvertedListAppend.cuh&quot;</span></div>
<div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="preprocessor">#include &quot;L2Norm.cuh&quot;</span></div>
<div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;<span class="preprocessor">#include &quot;PQCodeDistances.cuh&quot;</span></div>
<div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;<span class="preprocessor">#include &quot;PQScanMultiPassNoPrecomputed.cuh&quot;</span></div>
<div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;<span class="preprocessor">#include &quot;PQScanMultiPassPrecomputed.cuh&quot;</span></div>
<div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;<span class="preprocessor">#include &quot;RemapIndices.h&quot;</span></div>
<div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;<span class="preprocessor">#include &quot;VectorResidual.cuh&quot;</span></div>
<div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;<span class="preprocessor">#include &quot;../utils/DeviceDefs.cuh&quot;</span></div>
<div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;<span class="preprocessor">#include &quot;../utils/DeviceUtils.h&quot;</span></div>
<div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;<span class="preprocessor">#include &quot;../utils/HostTensor.cuh&quot;</span></div>
<div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;<span class="preprocessor">#include &quot;../utils/MatrixMult.cuh&quot;</span></div>
<div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;<span class="preprocessor">#include &quot;../utils/NoTypeTensor.cuh&quot;</span></div>
<div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;<span class="preprocessor">#include &quot;../utils/Transpose.cuh&quot;</span></div>
<div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;<span class="preprocessor">#include &lt;limits&gt;</span></div>
<div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;<span class="preprocessor">#include &lt;thrust/host_vector.h&gt;</span></div>
<div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;<span class="preprocessor">#include &lt;unordered_map&gt;</span></div>
<div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;</div>
<div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;<span class="keyword">namespace </span>faiss { <span class="keyword">namespace </span>gpu {</div>
<div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;</div>
<div class="line"><a name="l00035"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1IVFPQ.html#a18cfe8bf2178468f3372727d0b0bbc33">   35</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#a18cfe8bf2178468f3372727d0b0bbc33">IVFPQ::IVFPQ</a>(<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html">GpuResources</a>* resources,</div>
<div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;             <a class="code" href="classfaiss_1_1gpu_1_1FlatIndex.html">FlatIndex</a>* quantizer,</div>
<div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;             <span class="keywordtype">int</span> numSubQuantizers,</div>
<div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;             <span class="keywordtype">int</span> bitsPerSubQuantizer,</div>
<div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;             <span class="keywordtype">float</span>* pqCentroidData,</div>
<div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;             IndicesOptions indicesOptions,</div>
<div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;             <span class="keywordtype">bool</span> useFloat16LookupTables,</div>
<div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;             MemorySpace space) :</div>
<div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;    <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html">IVFBase</a>(resources,</div>
<div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;            quantizer,</div>
<div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;            numSubQuantizers,</div>
<div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;            indicesOptions,</div>
<div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;            space),</div>
<div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;    numSubQuantizers_(numSubQuantizers),</div>
<div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;    bitsPerSubQuantizer_(bitsPerSubQuantizer),</div>
<div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;    numSubQuantizerCodes_(utils::pow2(bitsPerSubQuantizer_)),</div>
<div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;    dimPerSubQuantizer_(dim_ / numSubQuantizers),</div>
<div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;    precomputedCodes_(false),</div>
<div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;    useFloat16LookupTables_(useFloat16LookupTables) {</div>
<div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;  FAISS_ASSERT(pqCentroidData);</div>
<div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;</div>
<div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;  FAISS_ASSERT(bitsPerSubQuantizer_ &lt;= 8);</div>
<div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;  FAISS_ASSERT(<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#aba3e3cfa469e5187f2d553fff10e0250">dim_</a> % numSubQuantizers_ == 0);</div>
<div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;  FAISS_ASSERT(<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#adb58eeacdceb0e0fde1820ca7f116e05">isSupportedPQCodeLength</a>(<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a319568b832518392fed33ea4f8bfc613">bytesPerVector_</a>));</div>
<div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;</div>
<div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;<span class="preprocessor">#ifndef FAISS_USE_FLOAT16</span></div>
<div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;<span class="preprocessor"></span>  FAISS_ASSERT(!useFloat16LookupTables_);</div>
<div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;<span class="preprocessor">#endif</span></div>
<div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;<span class="preprocessor"></span></div>
<div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;  setPQCentroids_(pqCentroidData);</div>
<div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;}</div>
<div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;</div>
<div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;IVFPQ::~IVFPQ() {</div>
<div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;}</div>
<div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;</div>
<div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;</div>
<div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;<span class="keywordtype">bool</span></div>
<div class="line"><a name="l00072"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1IVFPQ.html#adb58eeacdceb0e0fde1820ca7f116e05">   72</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#adb58eeacdceb0e0fde1820ca7f116e05">IVFPQ::isSupportedPQCodeLength</a>(<span class="keywordtype">int</span> size) {</div>
<div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;  <span class="keywordflow">switch</span> (size) {</div>
<div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;    <span class="keywordflow">case</span> 1:</div>
<div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;    <span class="keywordflow">case</span> 2:</div>
<div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;    <span class="keywordflow">case</span> 3:</div>
<div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;    <span class="keywordflow">case</span> 4:</div>
<div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;    <span class="keywordflow">case</span> 8:</div>
<div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;    <span class="keywordflow">case</span> 12:</div>
<div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;    <span class="keywordflow">case</span> 16:</div>
<div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;    <span class="keywordflow">case</span> 20:</div>
<div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;    <span class="keywordflow">case</span> 24:</div>
<div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;    <span class="keywordflow">case</span> 28:</div>
<div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;    <span class="keywordflow">case</span> 32:</div>
<div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;    <span class="keywordflow">case</span> 40:</div>
<div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;    <span class="keywordflow">case</span> 48:</div>
<div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;    <span class="keywordflow">case</span> 56: <span class="comment">// only supported with float16</span></div>
<div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;    <span class="keywordflow">case</span> 64: <span class="comment">// only supported with float16</span></div>
<div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;    <span class="keywordflow">case</span> 96: <span class="comment">// only supported with float16</span></div>
<div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;      <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
<div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;    <span class="keywordflow">default</span>:</div>
<div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;      <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
<div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;  }</div>
<div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;}</div>
<div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;</div>
<div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;<span class="keywordtype">bool</span></div>
<div class="line"><a name="l00097"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1IVFPQ.html#a0eedf0295ad73125ee1254173a176674">   97</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#a0eedf0295ad73125ee1254173a176674">IVFPQ::isSupportedNoPrecomputedSubDimSize</a>(<span class="keywordtype">int</span> dims) {</div>
<div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;  <span class="keywordflow">return</span> faiss::gpu::isSupportedNoPrecomputedSubDimSize(dims);</div>
<div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;}</div>
<div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;</div>
<div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;<span class="keywordtype">void</span></div>
<div class="line"><a name="l00102"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1IVFPQ.html#adcee5dbf48c3cb6b8a67f5f392e155fd">  102</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#adcee5dbf48c3cb6b8a67f5f392e155fd">IVFPQ::setPrecomputedCodes</a>(<span class="keywordtype">bool</span> enable) {</div>
<div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;  <span class="keywordflow">if</span> (precomputedCodes_ != enable) {</div>
<div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;    precomputedCodes_ = enable;</div>
<div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;</div>
<div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;    <span class="keywordflow">if</span> (precomputedCodes_) {</div>
<div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;      precomputeCodes_();</div>
<div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;    } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;      <span class="comment">// Clear out old precomputed code data</span></div>
<div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;      precomputedCode_ = std::move(<a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;float, 3, true&gt;</a>());</div>
<div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;</div>
<div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;<span class="preprocessor">#ifdef FAISS_USE_FLOAT16</span></div>
<div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;<span class="preprocessor"></span>      precomputedCodeHalf_ = std::move(<a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;half, 3, true&gt;</a>());</div>
<div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;<span class="preprocessor">#endif</span></div>
<div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;<span class="preprocessor"></span>    }</div>
<div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;  }</div>
<div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;}</div>
<div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;</div>
<div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;<span class="keywordtype">int</span></div>
<div class="line"><a name="l00120"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1IVFPQ.html#ab1e07b04b25569cc58c5f3f033f4dab3">  120</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#ab1e07b04b25569cc58c5f3f033f4dab3">IVFPQ::classifyAndAddVectors</a>(<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;float, 2, true&gt;</a>&amp; vecs,</div>
<div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;                             <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;long, 1, true&gt;</a>&amp; indices) {</div>
<div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;  FAISS_ASSERT(vecs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0) == indices.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0));</div>
<div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;  FAISS_ASSERT(vecs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(1) == <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#aba3e3cfa469e5187f2d553fff10e0250">dim_</a>);</div>
<div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;</div>
<div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;  FAISS_ASSERT(!<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">quantizer_</a>-&gt;getUseFloat16());</div>
<div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;  <span class="keyword">auto</span>&amp; coarseCentroids = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">quantizer_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1FlatIndex.html#a12058744ffb3fbcbb047872449269c06">getVectorsFloat32Ref</a>();</div>
<div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;  <span class="keyword">auto</span>&amp; mem = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#a1dda2dc3db1bd62cde6657c5cdbfb6e1">getMemoryManagerCurrentDevice</a>();</div>
<div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;  <span class="keyword">auto</span> stream = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#aa0354aa570c24e17a9f8a6a45b153ed2">getDefaultStreamCurrentDevice</a>();</div>
<div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;</div>
<div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;  <span class="comment">// Number of valid vectors that we actually add; we return this</span></div>
<div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;  <span class="keywordtype">int</span> numAdded = 0;</div>
<div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;</div>
<div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;  <span class="comment">// We don&#39;t actually need this</span></div>
<div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;float, 2, true&gt;</a> listDistance(mem, {vecs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0), 1}, stream);</div>
<div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;  <span class="comment">// We use this</span></div>
<div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;int, 2, true&gt;</a> listIds2d(mem, {vecs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0), 1}, stream);</div>
<div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;  <span class="keyword">auto</span> listIds = listIds2d.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a74dbc09519c9c14479b2d18f2e5042e8">view</a>&lt;1&gt;({vecs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0)});</div>
<div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;</div>
<div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">quantizer_</a>-&gt;query(vecs, 1, listDistance, listIds2d, <span class="keyword">false</span>);</div>
<div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;</div>
<div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;  <span class="comment">// Copy the lists that we wish to append to back to the CPU</span></div>
<div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;  <span class="comment">// FIXME: really this can be into pinned memory and a true async</span></div>
<div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;  <span class="comment">// copy on a different stream; we can start the copy early, but it&#39;s</span></div>
<div class="line"><a name="l00144"></a><span class="lineno">  144</span>&#160;  <span class="comment">// tiny</span></div>
<div class="line"><a name="l00145"></a><span class="lineno">  145</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1HostTensor.html">HostTensor&lt;int, 1, true&gt;</a> listIdsHost(listIds, stream);</div>
<div class="line"><a name="l00146"></a><span class="lineno">  146</span>&#160;</div>
<div class="line"><a name="l00147"></a><span class="lineno">  147</span>&#160;  <span class="comment">// Calculate the residual for each closest centroid</span></div>
<div class="line"><a name="l00148"></a><span class="lineno">  148</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;float, 2, true&gt;</a> residuals(</div>
<div class="line"><a name="l00149"></a><span class="lineno">  149</span>&#160;    mem, {vecs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0), vecs.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(1)}, stream);</div>
<div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;</div>
<div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;  runCalcResidual(vecs, coarseCentroids, listIds, residuals, stream);</div>
<div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;</div>
<div class="line"><a name="l00153"></a><span class="lineno">  153</span>&#160;  <span class="comment">// Residuals are in the form</span></div>
<div class="line"><a name="l00154"></a><span class="lineno">  154</span>&#160;  <span class="comment">// (vec x numSubQuantizer x dimPerSubQuantizer)</span></div>
<div class="line"><a name="l00155"></a><span class="lineno">  155</span>&#160;  <span class="comment">// transpose to</span></div>
<div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;  <span class="comment">// (numSubQuantizer x vec x dimPerSubQuantizer)</span></div>
<div class="line"><a name="l00157"></a><span class="lineno">  157</span>&#160;  <span class="keyword">auto</span> residualsView = residuals.view&lt;3&gt;(</div>
<div class="line"><a name="l00158"></a><span class="lineno">  158</span>&#160;    {residuals.getSize(0), numSubQuantizers_, dimPerSubQuantizer_});</div>
<div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;</div>
<div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;float, 3, true&gt;</a> residualsTranspose(</div>
<div class="line"><a name="l00161"></a><span class="lineno">  161</span>&#160;    mem,</div>
<div class="line"><a name="l00162"></a><span class="lineno">  162</span>&#160;    {numSubQuantizers_, residuals.getSize(0), dimPerSubQuantizer_},</div>
<div class="line"><a name="l00163"></a><span class="lineno">  163</span>&#160;    stream);</div>
<div class="line"><a name="l00164"></a><span class="lineno">  164</span>&#160;</div>
<div class="line"><a name="l00165"></a><span class="lineno">  165</span>&#160;  runTransposeAny(residualsView, 0, 1, residualsTranspose, stream);</div>
<div class="line"><a name="l00166"></a><span class="lineno">  166</span>&#160;</div>
<div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;  <span class="comment">// Get the product quantizer centroids in the form</span></div>
<div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;  <span class="comment">// (numSubQuantizer x numSubQuantizerCodes x dimPerSubQuantizer)</span></div>
<div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;  <span class="comment">// which is pqCentroidsMiddleCode_</span></div>
<div class="line"><a name="l00170"></a><span class="lineno">  170</span>&#160;</div>
<div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;  <span class="comment">// We now have a batch operation to find the top-1 distances:</span></div>
<div class="line"><a name="l00172"></a><span class="lineno">  172</span>&#160;  <span class="comment">// batch size: numSubQuantizer</span></div>
<div class="line"><a name="l00173"></a><span class="lineno">  173</span>&#160;  <span class="comment">// centroids: (numSubQuantizerCodes x dimPerSubQuantizer)</span></div>
<div class="line"><a name="l00174"></a><span class="lineno">  174</span>&#160;  <span class="comment">// residuals: (vec x dimPerSubQuantizer)</span></div>
<div class="line"><a name="l00175"></a><span class="lineno">  175</span>&#160;  <span class="comment">// =&gt; (numSubQuantizer x vec x 1)</span></div>
<div class="line"><a name="l00176"></a><span class="lineno">  176</span>&#160;</div>
<div class="line"><a name="l00177"></a><span class="lineno">  177</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;float, 3, true&gt;</a> closestSubQDistance(</div>
<div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;    mem, {numSubQuantizers_, residuals.getSize(0), 1}, stream);</div>
<div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;int, 3, true&gt;</a> closestSubQIndex(</div>
<div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;    mem, {numSubQuantizers_, residuals.getSize(0), 1}, stream);</div>
<div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;</div>
<div class="line"><a name="l00182"></a><span class="lineno">  182</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> subQ = 0; subQ &lt; numSubQuantizers_; ++subQ) {</div>
<div class="line"><a name="l00183"></a><span class="lineno">  183</span>&#160;    <span class="keyword">auto</span> closestSubQDistanceView = closestSubQDistance[subQ].<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a74dbc09519c9c14479b2d18f2e5042e8">view</a>();</div>
<div class="line"><a name="l00184"></a><span class="lineno">  184</span>&#160;    <span class="keyword">auto</span> closestSubQIndexView = closestSubQIndex[subQ].view();</div>
<div class="line"><a name="l00185"></a><span class="lineno">  185</span>&#160;</div>
<div class="line"><a name="l00186"></a><span class="lineno">  186</span>&#160;    <span class="keyword">auto</span> pqCentroidsMiddleCodeView = pqCentroidsMiddleCode_[subQ].<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a74dbc09519c9c14479b2d18f2e5042e8">view</a>();</div>
<div class="line"><a name="l00187"></a><span class="lineno">  187</span>&#160;    <span class="keyword">auto</span> residualsTransposeView = residualsTranspose[subQ].view();</div>
<div class="line"><a name="l00188"></a><span class="lineno">  188</span>&#160;</div>
<div class="line"><a name="l00189"></a><span class="lineno">  189</span>&#160;    runL2Distance(<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>,</div>
<div class="line"><a name="l00190"></a><span class="lineno">  190</span>&#160;                  pqCentroidsMiddleCodeView,</div>
<div class="line"><a name="l00191"></a><span class="lineno">  191</span>&#160;                  <span class="keyword">nullptr</span>, <span class="comment">// no transposed storage</span></div>
<div class="line"><a name="l00192"></a><span class="lineno">  192</span>&#160;                  <span class="keyword">nullptr</span>, <span class="comment">// no precomputed norms</span></div>
<div class="line"><a name="l00193"></a><span class="lineno">  193</span>&#160;                  residualsTransposeView,</div>
<div class="line"><a name="l00194"></a><span class="lineno">  194</span>&#160;                  1,</div>
<div class="line"><a name="l00195"></a><span class="lineno">  195</span>&#160;                  closestSubQDistanceView,</div>
<div class="line"><a name="l00196"></a><span class="lineno">  196</span>&#160;                  closestSubQIndexView,</div>
<div class="line"><a name="l00197"></a><span class="lineno">  197</span>&#160;                  <span class="comment">// We don&#39;t care about distances</span></div>
<div class="line"><a name="l00198"></a><span class="lineno">  198</span>&#160;                  <span class="keyword">true</span>);</div>
<div class="line"><a name="l00199"></a><span class="lineno">  199</span>&#160;  }</div>
<div class="line"><a name="l00200"></a><span class="lineno">  200</span>&#160;</div>
<div class="line"><a name="l00201"></a><span class="lineno">  201</span>&#160;  <span class="comment">// Now, we have the nearest sub-q centroid for each slice of the</span></div>
<div class="line"><a name="l00202"></a><span class="lineno">  202</span>&#160;  <span class="comment">// residual vector.</span></div>
<div class="line"><a name="l00203"></a><span class="lineno">  203</span>&#160;  <span class="keyword">auto</span> closestSubQIndexView = closestSubQIndex.view&lt;2&gt;(</div>
<div class="line"><a name="l00204"></a><span class="lineno">  204</span>&#160;    {numSubQuantizers_, residuals.getSize(0)});</div>
<div class="line"><a name="l00205"></a><span class="lineno">  205</span>&#160;</div>
<div class="line"><a name="l00206"></a><span class="lineno">  206</span>&#160;  <span class="comment">// Transpose this for easy use</span></div>
<div class="line"><a name="l00207"></a><span class="lineno">  207</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;int, 2, true&gt;</a> encodings(</div>
<div class="line"><a name="l00208"></a><span class="lineno">  208</span>&#160;    mem, {residuals.getSize(0), numSubQuantizers_}, stream);</div>
<div class="line"><a name="l00209"></a><span class="lineno">  209</span>&#160;</div>
<div class="line"><a name="l00210"></a><span class="lineno">  210</span>&#160;  runTransposeAny(closestSubQIndexView, 0, 1, encodings, stream);</div>
<div class="line"><a name="l00211"></a><span class="lineno">  211</span>&#160;</div>
<div class="line"><a name="l00212"></a><span class="lineno">  212</span>&#160;  <span class="comment">// Now we add the encoded vectors to the individual lists</span></div>
<div class="line"><a name="l00213"></a><span class="lineno">  213</span>&#160;  <span class="comment">// First, make sure that there is space available for adding the new</span></div>
<div class="line"><a name="l00214"></a><span class="lineno">  214</span>&#160;  <span class="comment">// encoded vectors and indices</span></div>
<div class="line"><a name="l00215"></a><span class="lineno">  215</span>&#160;</div>
<div class="line"><a name="l00216"></a><span class="lineno">  216</span>&#160;  <span class="comment">// list id -&gt; # being added</span></div>
<div class="line"><a name="l00217"></a><span class="lineno">  217</span>&#160;  std::unordered_map&lt;int, int&gt; assignCounts;</div>
<div class="line"><a name="l00218"></a><span class="lineno">  218</span>&#160;</div>
<div class="line"><a name="l00219"></a><span class="lineno">  219</span>&#160;  <span class="comment">// vector id -&gt; offset in list</span></div>
<div class="line"><a name="l00220"></a><span class="lineno">  220</span>&#160;  <span class="comment">// (we already have vector id -&gt; list id in listIds)</span></div>
<div class="line"><a name="l00221"></a><span class="lineno">  221</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1HostTensor.html">HostTensor&lt;int, 1, true&gt;</a> listOffsetHost({listIdsHost.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0)});</div>
<div class="line"><a name="l00222"></a><span class="lineno">  222</span>&#160;</div>
<div class="line"><a name="l00223"></a><span class="lineno">  223</span>&#160;  <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; listIdsHost.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0); ++i) {</div>
<div class="line"><a name="l00224"></a><span class="lineno">  224</span>&#160;    <span class="keywordtype">int</span> listId = listIdsHost[i];</div>
<div class="line"><a name="l00225"></a><span class="lineno">  225</span>&#160;</div>
<div class="line"><a name="l00226"></a><span class="lineno">  226</span>&#160;    <span class="comment">// Add vector could be invalid (contains NaNs etc)</span></div>
<div class="line"><a name="l00227"></a><span class="lineno">  227</span>&#160;    <span class="keywordflow">if</span> (listId &lt; 0) {</div>
<div class="line"><a name="l00228"></a><span class="lineno">  228</span>&#160;      listOffsetHost[i] = -1;</div>
<div class="line"><a name="l00229"></a><span class="lineno">  229</span>&#160;      <span class="keywordflow">continue</span>;</div>
<div class="line"><a name="l00230"></a><span class="lineno">  230</span>&#160;    }</div>
<div class="line"><a name="l00231"></a><span class="lineno">  231</span>&#160;</div>
<div class="line"><a name="l00232"></a><span class="lineno">  232</span>&#160;    FAISS_ASSERT(listId &lt; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#accc4d96c14643e5f471220cb1e92ac70">numLists_</a>);</div>
<div class="line"><a name="l00233"></a><span class="lineno">  233</span>&#160;    ++numAdded;</div>
<div class="line"><a name="l00234"></a><span class="lineno">  234</span>&#160;</div>
<div class="line"><a name="l00235"></a><span class="lineno">  235</span>&#160;    <span class="keywordtype">int</span> offset = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a2facc7285107de1f24d3471cbcf15f26">deviceListData_</a>[listId]-&gt;size() / <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a319568b832518392fed33ea4f8bfc613">bytesPerVector_</a>;</div>
<div class="line"><a name="l00236"></a><span class="lineno">  236</span>&#160;</div>
<div class="line"><a name="l00237"></a><span class="lineno">  237</span>&#160;    <span class="keyword">auto</span> it = assignCounts.find(listId);</div>
<div class="line"><a name="l00238"></a><span class="lineno">  238</span>&#160;    <span class="keywordflow">if</span> (it != assignCounts.end()) {</div>
<div class="line"><a name="l00239"></a><span class="lineno">  239</span>&#160;      offset += it-&gt;second;</div>
<div class="line"><a name="l00240"></a><span class="lineno">  240</span>&#160;      it-&gt;second++;</div>
<div class="line"><a name="l00241"></a><span class="lineno">  241</span>&#160;    } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00242"></a><span class="lineno">  242</span>&#160;      assignCounts[listId] = 1;</div>
<div class="line"><a name="l00243"></a><span class="lineno">  243</span>&#160;    }</div>
<div class="line"><a name="l00244"></a><span class="lineno">  244</span>&#160;</div>
<div class="line"><a name="l00245"></a><span class="lineno">  245</span>&#160;    listOffsetHost[i] = offset;</div>
<div class="line"><a name="l00246"></a><span class="lineno">  246</span>&#160;  }</div>
<div class="line"><a name="l00247"></a><span class="lineno">  247</span>&#160;</div>
<div class="line"><a name="l00248"></a><span class="lineno">  248</span>&#160;  <span class="comment">// If we didn&#39;t add anything (all invalid vectors), no need to</span></div>
<div class="line"><a name="l00249"></a><span class="lineno">  249</span>&#160;  <span class="comment">// continue</span></div>
<div class="line"><a name="l00250"></a><span class="lineno">  250</span>&#160;  <span class="keywordflow">if</span> (numAdded == 0) {</div>
<div class="line"><a name="l00251"></a><span class="lineno">  251</span>&#160;    <span class="keywordflow">return</span> 0;</div>
<div class="line"><a name="l00252"></a><span class="lineno">  252</span>&#160;  }</div>
<div class="line"><a name="l00253"></a><span class="lineno">  253</span>&#160;</div>
<div class="line"><a name="l00254"></a><span class="lineno">  254</span>&#160;  <span class="comment">// We need to resize the data structures for the inverted lists on</span></div>
<div class="line"><a name="l00255"></a><span class="lineno">  255</span>&#160;  <span class="comment">// the GPUs, which means that they might need reallocation, which</span></div>
<div class="line"><a name="l00256"></a><span class="lineno">  256</span>&#160;  <span class="comment">// means that their base address may change. Figure out the new base</span></div>
<div class="line"><a name="l00257"></a><span class="lineno">  257</span>&#160;  <span class="comment">// addresses, and update those in a batch on the device</span></div>
<div class="line"><a name="l00258"></a><span class="lineno">  258</span>&#160;  {</div>
<div class="line"><a name="l00259"></a><span class="lineno">  259</span>&#160;    <span class="comment">// Resize all of the lists that we are appending to</span></div>
<div class="line"><a name="l00260"></a><span class="lineno">  260</span>&#160;    <span class="keywordflow">for</span> (<span class="keyword">auto</span>&amp; counts : assignCounts) {</div>
<div class="line"><a name="l00261"></a><span class="lineno">  261</span>&#160;      <span class="keyword">auto</span>&amp; codes = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a2facc7285107de1f24d3471cbcf15f26">deviceListData_</a>[counts.first];</div>
<div class="line"><a name="l00262"></a><span class="lineno">  262</span>&#160;      codes-&gt;resize(codes-&gt;size() + counts.second * <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a319568b832518392fed33ea4f8bfc613">bytesPerVector_</a>,</div>
<div class="line"><a name="l00263"></a><span class="lineno">  263</span>&#160;                    stream);</div>
<div class="line"><a name="l00264"></a><span class="lineno">  264</span>&#160;      <span class="keywordtype">int</span> newNumVecs = (int) (codes-&gt;size() / <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a319568b832518392fed33ea4f8bfc613">bytesPerVector_</a>);</div>
<div class="line"><a name="l00265"></a><span class="lineno">  265</span>&#160;</div>
<div class="line"><a name="l00266"></a><span class="lineno">  266</span>&#160;      <span class="keyword">auto</span>&amp; indices = deviceListIndices_[counts.first];</div>
<div class="line"><a name="l00267"></a><span class="lineno">  267</span>&#160;      <span class="keywordflow">if</span> ((<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a> == INDICES_32_BIT) ||</div>
<div class="line"><a name="l00268"></a><span class="lineno">  268</span>&#160;          (<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a> == INDICES_64_BIT)) {</div>
<div class="line"><a name="l00269"></a><span class="lineno">  269</span>&#160;        <span class="keywordtype">size_t</span> indexSize =</div>
<div class="line"><a name="l00270"></a><span class="lineno">  270</span>&#160;          (<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a> == INDICES_32_BIT) ? <span class="keyword">sizeof</span>(<span class="keywordtype">int</span>) : <span class="keyword">sizeof</span>(long);</div>
<div class="line"><a name="l00271"></a><span class="lineno">  271</span>&#160;</div>
<div class="line"><a name="l00272"></a><span class="lineno">  272</span>&#160;        indices-&gt;resize(indices-&gt;size() + counts.second * indexSize, stream);</div>
<div class="line"><a name="l00273"></a><span class="lineno">  273</span>&#160;      } <span class="keywordflow">else</span> <span class="keywordflow">if</span> (<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a> == INDICES_CPU) {</div>
<div class="line"><a name="l00274"></a><span class="lineno">  274</span>&#160;        <span class="comment">// indices are stored on the CPU side</span></div>
<div class="line"><a name="l00275"></a><span class="lineno">  275</span>&#160;        FAISS_ASSERT(counts.first &lt; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a53f3c382a79b7f89630a85dfbc3a1fed">listOffsetToUserIndex_</a>.size());</div>
<div class="line"><a name="l00276"></a><span class="lineno">  276</span>&#160;</div>
<div class="line"><a name="l00277"></a><span class="lineno">  277</span>&#160;        <span class="keyword">auto</span>&amp; userIndices = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a53f3c382a79b7f89630a85dfbc3a1fed">listOffsetToUserIndex_</a>[counts.first];</div>
<div class="line"><a name="l00278"></a><span class="lineno">  278</span>&#160;        userIndices.resize(newNumVecs);</div>
<div class="line"><a name="l00279"></a><span class="lineno">  279</span>&#160;      } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00280"></a><span class="lineno">  280</span>&#160;        <span class="comment">// indices are not stored on the GPU or CPU side</span></div>
<div class="line"><a name="l00281"></a><span class="lineno">  281</span>&#160;        FAISS_ASSERT(<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a> == INDICES_IVF);</div>
<div class="line"><a name="l00282"></a><span class="lineno">  282</span>&#160;      }</div>
<div class="line"><a name="l00283"></a><span class="lineno">  283</span>&#160;</div>
<div class="line"><a name="l00284"></a><span class="lineno">  284</span>&#160;      <span class="comment">// This is used by the multi-pass query to decide how much scratch</span></div>
<div class="line"><a name="l00285"></a><span class="lineno">  285</span>&#160;      <span class="comment">// space to allocate for intermediate results</span></div>
<div class="line"><a name="l00286"></a><span class="lineno">  286</span>&#160;      <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#ae25ea0901fb628844868413f51c85bda">maxListLength_</a> = std::max(<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#ae25ea0901fb628844868413f51c85bda">maxListLength_</a>, newNumVecs);</div>
<div class="line"><a name="l00287"></a><span class="lineno">  287</span>&#160;    }</div>
<div class="line"><a name="l00288"></a><span class="lineno">  288</span>&#160;</div>
<div class="line"><a name="l00289"></a><span class="lineno">  289</span>&#160;    <span class="comment">// Update all pointers and sizes on the device for lists that we</span></div>
<div class="line"><a name="l00290"></a><span class="lineno">  290</span>&#160;    <span class="comment">// appended to</span></div>
<div class="line"><a name="l00291"></a><span class="lineno">  291</span>&#160;    {</div>
<div class="line"><a name="l00292"></a><span class="lineno">  292</span>&#160;      std::vector&lt;int&gt; listIds(assignCounts.size());</div>
<div class="line"><a name="l00293"></a><span class="lineno">  293</span>&#160;      <span class="keywordtype">int</span> i = 0;</div>
<div class="line"><a name="l00294"></a><span class="lineno">  294</span>&#160;      <span class="keywordflow">for</span> (<span class="keyword">auto</span>&amp; counts : assignCounts) {</div>
<div class="line"><a name="l00295"></a><span class="lineno">  295</span>&#160;        listIds[i++] = counts.first;</div>
<div class="line"><a name="l00296"></a><span class="lineno">  296</span>&#160;      }</div>
<div class="line"><a name="l00297"></a><span class="lineno">  297</span>&#160;</div>
<div class="line"><a name="l00298"></a><span class="lineno">  298</span>&#160;      <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#acc695610c9513952b8d234dc0db78e5c">updateDeviceListInfo_</a>(listIds, stream);</div>
<div class="line"><a name="l00299"></a><span class="lineno">  299</span>&#160;    }</div>
<div class="line"><a name="l00300"></a><span class="lineno">  300</span>&#160;  }</div>
<div class="line"><a name="l00301"></a><span class="lineno">  301</span>&#160;</div>
<div class="line"><a name="l00302"></a><span class="lineno">  302</span>&#160;  <span class="comment">// If we&#39;re maintaining the indices on the CPU side, update our</span></div>
<div class="line"><a name="l00303"></a><span class="lineno">  303</span>&#160;  <span class="comment">// map. We already resized our map above.</span></div>
<div class="line"><a name="l00304"></a><span class="lineno">  304</span>&#160;  <span class="keywordflow">if</span> (<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a> == INDICES_CPU) {</div>
<div class="line"><a name="l00305"></a><span class="lineno">  305</span>&#160;    <span class="comment">// We need to maintain the indices on the CPU side</span></div>
<div class="line"><a name="l00306"></a><span class="lineno">  306</span>&#160;    <a class="code" href="classfaiss_1_1gpu_1_1HostTensor.html">HostTensor&lt;long, 1, true&gt;</a> hostIndices(indices, stream);</div>
<div class="line"><a name="l00307"></a><span class="lineno">  307</span>&#160;</div>
<div class="line"><a name="l00308"></a><span class="lineno">  308</span>&#160;    <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; hostIndices.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0); ++i) {</div>
<div class="line"><a name="l00309"></a><span class="lineno">  309</span>&#160;      <span class="keywordtype">int</span> listId = listIdsHost[i];</div>
<div class="line"><a name="l00310"></a><span class="lineno">  310</span>&#160;</div>
<div class="line"><a name="l00311"></a><span class="lineno">  311</span>&#160;      <span class="comment">// Add vector could be invalid (contains NaNs etc)</span></div>
<div class="line"><a name="l00312"></a><span class="lineno">  312</span>&#160;      <span class="keywordflow">if</span> (listId &lt; 0) {</div>
<div class="line"><a name="l00313"></a><span class="lineno">  313</span>&#160;        <span class="keywordflow">continue</span>;</div>
<div class="line"><a name="l00314"></a><span class="lineno">  314</span>&#160;      }</div>
<div class="line"><a name="l00315"></a><span class="lineno">  315</span>&#160;</div>
<div class="line"><a name="l00316"></a><span class="lineno">  316</span>&#160;      <span class="keywordtype">int</span> offset = listOffsetHost[i];</div>
<div class="line"><a name="l00317"></a><span class="lineno">  317</span>&#160;</div>
<div class="line"><a name="l00318"></a><span class="lineno">  318</span>&#160;      FAISS_ASSERT(listId &lt; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a53f3c382a79b7f89630a85dfbc3a1fed">listOffsetToUserIndex_</a>.size());</div>
<div class="line"><a name="l00319"></a><span class="lineno">  319</span>&#160;      <span class="keyword">auto</span>&amp; userIndices = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a53f3c382a79b7f89630a85dfbc3a1fed">listOffsetToUserIndex_</a>[listId];</div>
<div class="line"><a name="l00320"></a><span class="lineno">  320</span>&#160;</div>
<div class="line"><a name="l00321"></a><span class="lineno">  321</span>&#160;      FAISS_ASSERT(offset &lt; userIndices.size());</div>
<div class="line"><a name="l00322"></a><span class="lineno">  322</span>&#160;      userIndices[offset] = hostIndices[i];</div>
<div class="line"><a name="l00323"></a><span class="lineno">  323</span>&#160;    }</div>
<div class="line"><a name="l00324"></a><span class="lineno">  324</span>&#160;  }</div>
<div class="line"><a name="l00325"></a><span class="lineno">  325</span>&#160;</div>
<div class="line"><a name="l00326"></a><span class="lineno">  326</span>&#160;  <span class="comment">// We similarly need to actually append the new encoded vectors</span></div>
<div class="line"><a name="l00327"></a><span class="lineno">  327</span>&#160;  {</div>
<div class="line"><a name="l00328"></a><span class="lineno">  328</span>&#160;    <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;int, 1, true&gt;</a> listOffset(mem, listOffsetHost, stream);</div>
<div class="line"><a name="l00329"></a><span class="lineno">  329</span>&#160;</div>
<div class="line"><a name="l00330"></a><span class="lineno">  330</span>&#160;    <span class="comment">// This kernel will handle appending each encoded vector + index to</span></div>
<div class="line"><a name="l00331"></a><span class="lineno">  331</span>&#160;    <span class="comment">// the appropriate list</span></div>
<div class="line"><a name="l00332"></a><span class="lineno">  332</span>&#160;    runIVFPQInvertedListAppend(listIds,</div>
<div class="line"><a name="l00333"></a><span class="lineno">  333</span>&#160;                               listOffset,</div>
<div class="line"><a name="l00334"></a><span class="lineno">  334</span>&#160;                               encodings,</div>
<div class="line"><a name="l00335"></a><span class="lineno">  335</span>&#160;                               indices,</div>
<div class="line"><a name="l00336"></a><span class="lineno">  336</span>&#160;                               <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a96240a08b42bd1913e2286d7d514fc56">deviceListDataPointers_</a>,</div>
<div class="line"><a name="l00337"></a><span class="lineno">  337</span>&#160;                               <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a9aedcf0e6a20b908980ae96d73461f4c">deviceListIndexPointers_</a>,</div>
<div class="line"><a name="l00338"></a><span class="lineno">  338</span>&#160;                               <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a>,</div>
<div class="line"><a name="l00339"></a><span class="lineno">  339</span>&#160;                               stream);</div>
<div class="line"><a name="l00340"></a><span class="lineno">  340</span>&#160;  }</div>
<div class="line"><a name="l00341"></a><span class="lineno">  341</span>&#160;</div>
<div class="line"><a name="l00342"></a><span class="lineno">  342</span>&#160;  <span class="keywordflow">return</span> numAdded;</div>
<div class="line"><a name="l00343"></a><span class="lineno">  343</span>&#160;}</div>
<div class="line"><a name="l00344"></a><span class="lineno">  344</span>&#160;</div>
<div class="line"><a name="l00345"></a><span class="lineno">  345</span>&#160;<span class="keywordtype">void</span></div>
<div class="line"><a name="l00346"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1IVFPQ.html#a9992b38226dc8f92ca2691582fabb675">  346</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#a9992b38226dc8f92ca2691582fabb675">IVFPQ::addCodeVectorsFromCpu</a>(<span class="keywordtype">int</span> listId,</div>
<div class="line"><a name="l00347"></a><span class="lineno">  347</span>&#160;                             <span class="keyword">const</span> <span class="keywordtype">void</span>* codes,</div>
<div class="line"><a name="l00348"></a><span class="lineno">  348</span>&#160;                             <span class="keyword">const</span> <span class="keywordtype">long</span>* indices,</div>
<div class="line"><a name="l00349"></a><span class="lineno">  349</span>&#160;                             <span class="keywordtype">size_t</span> numVecs) {</div>
<div class="line"><a name="l00350"></a><span class="lineno">  350</span>&#160;  <span class="comment">// This list must already exist</span></div>
<div class="line"><a name="l00351"></a><span class="lineno">  351</span>&#160;  FAISS_ASSERT(listId &lt; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a2facc7285107de1f24d3471cbcf15f26">deviceListData_</a>.size());</div>
<div class="line"><a name="l00352"></a><span class="lineno">  352</span>&#160;  <span class="keyword">auto</span> stream = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#aa0354aa570c24e17a9f8a6a45b153ed2">getDefaultStreamCurrentDevice</a>();</div>
<div class="line"><a name="l00353"></a><span class="lineno">  353</span>&#160;</div>
<div class="line"><a name="l00354"></a><span class="lineno">  354</span>&#160;  <span class="comment">// If there&#39;s nothing to add, then there&#39;s nothing we have to do</span></div>
<div class="line"><a name="l00355"></a><span class="lineno">  355</span>&#160;  <span class="keywordflow">if</span> (numVecs == 0) {</div>
<div class="line"><a name="l00356"></a><span class="lineno">  356</span>&#160;    <span class="keywordflow">return</span>;</div>
<div class="line"><a name="l00357"></a><span class="lineno">  357</span>&#160;  }</div>
<div class="line"><a name="l00358"></a><span class="lineno">  358</span>&#160;</div>
<div class="line"><a name="l00359"></a><span class="lineno">  359</span>&#160;  <span class="keywordtype">size_t</span> lengthInBytes = numVecs * <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a319568b832518392fed33ea4f8bfc613">bytesPerVector_</a>;</div>
<div class="line"><a name="l00360"></a><span class="lineno">  360</span>&#160;</div>
<div class="line"><a name="l00361"></a><span class="lineno">  361</span>&#160;  <span class="keyword">auto</span>&amp; listCodes = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a2facc7285107de1f24d3471cbcf15f26">deviceListData_</a>[listId];</div>
<div class="line"><a name="l00362"></a><span class="lineno">  362</span>&#160;  <span class="keyword">auto</span> prevCodeData = listCodes-&gt;data();</div>
<div class="line"><a name="l00363"></a><span class="lineno">  363</span>&#160;</div>
<div class="line"><a name="l00364"></a><span class="lineno">  364</span>&#160;  <span class="comment">// We only have int32 length representations on the GPU per each</span></div>
<div class="line"><a name="l00365"></a><span class="lineno">  365</span>&#160;  <span class="comment">// list; the length is in sizeof(char)</span></div>
<div class="line"><a name="l00366"></a><span class="lineno">  366</span>&#160;  FAISS_ASSERT(listCodes-&gt;size() % bytesPerVector_ == 0);</div>
<div class="line"><a name="l00367"></a><span class="lineno">  367</span>&#160;  FAISS_ASSERT(listCodes-&gt;size() + lengthInBytes &lt;=</div>
<div class="line"><a name="l00368"></a><span class="lineno">  368</span>&#160;               (size_t) std::numeric_limits&lt;int&gt;::max());</div>
<div class="line"><a name="l00369"></a><span class="lineno">  369</span>&#160;</div>
<div class="line"><a name="l00370"></a><span class="lineno">  370</span>&#160;  listCodes-&gt;append((<span class="keywordtype">unsigned</span> <span class="keywordtype">char</span>*) codes,</div>
<div class="line"><a name="l00371"></a><span class="lineno">  371</span>&#160;                    lengthInBytes,</div>
<div class="line"><a name="l00372"></a><span class="lineno">  372</span>&#160;                    stream,</div>
<div class="line"><a name="l00373"></a><span class="lineno">  373</span>&#160;                    <span class="keyword">true</span> <span class="comment">/* exact reserved size */</span>);</div>
<div class="line"><a name="l00374"></a><span class="lineno">  374</span>&#160;</div>
<div class="line"><a name="l00375"></a><span class="lineno">  375</span>&#160;  <span class="comment">// Handle the indices as well</span></div>
<div class="line"><a name="l00376"></a><span class="lineno">  376</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a5027720549de98f4e609d6339099df35">addIndicesFromCpu_</a>(listId, indices, numVecs);</div>
<div class="line"><a name="l00377"></a><span class="lineno">  377</span>&#160;</div>
<div class="line"><a name="l00378"></a><span class="lineno">  378</span>&#160;  <span class="comment">// This list address may have changed due to vector resizing, but</span></div>
<div class="line"><a name="l00379"></a><span class="lineno">  379</span>&#160;  <span class="comment">// only bother updating it on the device if it has changed</span></div>
<div class="line"><a name="l00380"></a><span class="lineno">  380</span>&#160;  <span class="keywordflow">if</span> (prevCodeData != listCodes-&gt;data()) {</div>
<div class="line"><a name="l00381"></a><span class="lineno">  381</span>&#160;    <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a96240a08b42bd1913e2286d7d514fc56">deviceListDataPointers_</a>[listId] = listCodes-&gt;data();</div>
<div class="line"><a name="l00382"></a><span class="lineno">  382</span>&#160;  }</div>
<div class="line"><a name="l00383"></a><span class="lineno">  383</span>&#160;</div>
<div class="line"><a name="l00384"></a><span class="lineno">  384</span>&#160;  <span class="comment">// And our size has changed too</span></div>
<div class="line"><a name="l00385"></a><span class="lineno">  385</span>&#160;  <span class="keywordtype">int</span> listLength = listCodes-&gt;size() / <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a319568b832518392fed33ea4f8bfc613">bytesPerVector_</a>;</div>
<div class="line"><a name="l00386"></a><span class="lineno">  386</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a3a1c2031a4763f7d55bc8a400c63af66">deviceListLengths_</a>[listId] = listLength;</div>
<div class="line"><a name="l00387"></a><span class="lineno">  387</span>&#160;</div>
<div class="line"><a name="l00388"></a><span class="lineno">  388</span>&#160;  <span class="comment">// We update this as well, since the multi-pass algorithm uses it</span></div>
<div class="line"><a name="l00389"></a><span class="lineno">  389</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#ae25ea0901fb628844868413f51c85bda">maxListLength_</a> = std::max(<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#ae25ea0901fb628844868413f51c85bda">maxListLength_</a>, listLength);</div>
<div class="line"><a name="l00390"></a><span class="lineno">  390</span>&#160;</div>
<div class="line"><a name="l00391"></a><span class="lineno">  391</span>&#160;  <span class="comment">// device_vector add is potentially happening on a different stream</span></div>
<div class="line"><a name="l00392"></a><span class="lineno">  392</span>&#160;  <span class="comment">// than our default stream</span></div>
<div class="line"><a name="l00393"></a><span class="lineno">  393</span>&#160;  <span class="keywordflow">if</span> (<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#aa0354aa570c24e17a9f8a6a45b153ed2">getDefaultStreamCurrentDevice</a>() != 0) {</div>
<div class="line"><a name="l00394"></a><span class="lineno">  394</span>&#160;    streamWait({stream}, {0});</div>
<div class="line"><a name="l00395"></a><span class="lineno">  395</span>&#160;  }</div>
<div class="line"><a name="l00396"></a><span class="lineno">  396</span>&#160;}</div>
<div class="line"><a name="l00397"></a><span class="lineno">  397</span>&#160;</div>
<div class="line"><a name="l00398"></a><span class="lineno">  398</span>&#160;<span class="keywordtype">void</span></div>
<div class="line"><a name="l00399"></a><span class="lineno">  399</span>&#160;IVFPQ::setPQCentroids_(<span class="keywordtype">float</span>* data) {</div>
<div class="line"><a name="l00400"></a><span class="lineno">  400</span>&#160;  <span class="keywordtype">size_t</span> pqSize =</div>
<div class="line"><a name="l00401"></a><span class="lineno">  401</span>&#160;    numSubQuantizers_ * numSubQuantizerCodes_ * dimPerSubQuantizer_;</div>
<div class="line"><a name="l00402"></a><span class="lineno">  402</span>&#160;</div>
<div class="line"><a name="l00403"></a><span class="lineno">  403</span>&#160;  <span class="comment">// Make sure the data is on the host</span></div>
<div class="line"><a name="l00404"></a><span class="lineno">  404</span>&#160;  <span class="comment">// FIXME: why are we doing this?</span></div>
<div class="line"><a name="l00405"></a><span class="lineno">  405</span>&#160;  thrust::host_vector&lt;float&gt; hostMemory;</div>
<div class="line"><a name="l00406"></a><span class="lineno">  406</span>&#160;  hostMemory.insert(hostMemory.end(), data, data + pqSize);</div>
<div class="line"><a name="l00407"></a><span class="lineno">  407</span>&#160;</div>
<div class="line"><a name="l00408"></a><span class="lineno">  408</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1HostTensor.html">HostTensor&lt;float, 3, true&gt;</a> pqHost(</div>
<div class="line"><a name="l00409"></a><span class="lineno">  409</span>&#160;    hostMemory.data(),</div>
<div class="line"><a name="l00410"></a><span class="lineno">  410</span>&#160;    {numSubQuantizers_, numSubQuantizerCodes_, dimPerSubQuantizer_});</div>
<div class="line"><a name="l00411"></a><span class="lineno">  411</span>&#160;  DeviceTensor&lt;float, 3, true&gt; pqDevice(</div>
<div class="line"><a name="l00412"></a><span class="lineno">  412</span>&#160;    pqHost,</div>
<div class="line"><a name="l00413"></a><span class="lineno">  413</span>&#160;    <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#aa0354aa570c24e17a9f8a6a45b153ed2">getDefaultStreamCurrentDevice</a>());</div>
<div class="line"><a name="l00414"></a><span class="lineno">  414</span>&#160;</div>
<div class="line"><a name="l00415"></a><span class="lineno">  415</span>&#160;  DeviceTensor&lt;float, 3, true&gt; pqDeviceTranspose(</div>
<div class="line"><a name="l00416"></a><span class="lineno">  416</span>&#160;    {numSubQuantizers_, dimPerSubQuantizer_, numSubQuantizerCodes_});</div>
<div class="line"><a name="l00417"></a><span class="lineno">  417</span>&#160;  runTransposeAny(pqDevice, 1, 2, pqDeviceTranspose,</div>
<div class="line"><a name="l00418"></a><span class="lineno">  418</span>&#160;                  <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#aa0354aa570c24e17a9f8a6a45b153ed2">getDefaultStreamCurrentDevice</a>());</div>
<div class="line"><a name="l00419"></a><span class="lineno">  419</span>&#160;</div>
<div class="line"><a name="l00420"></a><span class="lineno">  420</span>&#160;  pqCentroidsInnermostCode_ = std::move(pqDeviceTranspose);</div>
<div class="line"><a name="l00421"></a><span class="lineno">  421</span>&#160;</div>
<div class="line"><a name="l00422"></a><span class="lineno">  422</span>&#160;  <span class="comment">// Also maintain the PQ centroids in the form</span></div>
<div class="line"><a name="l00423"></a><span class="lineno">  423</span>&#160;  <span class="comment">// (sub q)(code id)(sub dim)</span></div>
<div class="line"><a name="l00424"></a><span class="lineno">  424</span>&#160;  DeviceTensor&lt;float, 3, true&gt; pqCentroidsMiddleCode(</div>
<div class="line"><a name="l00425"></a><span class="lineno">  425</span>&#160;    {numSubQuantizers_, numSubQuantizerCodes_, dimPerSubQuantizer_});</div>
<div class="line"><a name="l00426"></a><span class="lineno">  426</span>&#160;  runTransposeAny(pqCentroidsInnermostCode_, 1, 2, pqCentroidsMiddleCode,</div>
<div class="line"><a name="l00427"></a><span class="lineno">  427</span>&#160;                  <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#aa0354aa570c24e17a9f8a6a45b153ed2">getDefaultStreamCurrentDevice</a>());</div>
<div class="line"><a name="l00428"></a><span class="lineno">  428</span>&#160;</div>
<div class="line"><a name="l00429"></a><span class="lineno">  429</span>&#160;  pqCentroidsMiddleCode_ = std::move(pqCentroidsMiddleCode);</div>
<div class="line"><a name="l00430"></a><span class="lineno">  430</span>&#160;}</div>
<div class="line"><a name="l00431"></a><span class="lineno">  431</span>&#160;</div>
<div class="line"><a name="l00432"></a><span class="lineno">  432</span>&#160;<span class="keywordtype">void</span></div>
<div class="line"><a name="l00433"></a><span class="lineno">  433</span>&#160;IVFPQ::precomputeCodes_() {</div>
<div class="line"><a name="l00434"></a><span class="lineno">  434</span>&#160;  <span class="comment">//</span></div>
<div class="line"><a name="l00435"></a><span class="lineno">  435</span>&#160;  <span class="comment">//    d = || x - y_C ||^2 + || y_R ||^2 + 2 * (y_C|y_R) - 2 * (x|y_R)</span></div>
<div class="line"><a name="l00436"></a><span class="lineno">  436</span>&#160;  <span class="comment">//        ---------------   ---------------------------       -------</span></div>
<div class="line"><a name="l00437"></a><span class="lineno">  437</span>&#160;  <span class="comment">//            term 1                 term 2                   term 3</span></div>
<div class="line"><a name="l00438"></a><span class="lineno">  438</span>&#160;  <span class="comment">//</span></div>
<div class="line"><a name="l00439"></a><span class="lineno">  439</span>&#160;</div>
<div class="line"><a name="l00440"></a><span class="lineno">  440</span>&#160;  <span class="comment">// Terms 1 and 3 are available only at query time. We compute term 2</span></div>
<div class="line"><a name="l00441"></a><span class="lineno">  441</span>&#160;  <span class="comment">// here.</span></div>
<div class="line"><a name="l00442"></a><span class="lineno">  442</span>&#160;  FAISS_ASSERT(!<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">quantizer_</a>-&gt;getUseFloat16());</div>
<div class="line"><a name="l00443"></a><span class="lineno">  443</span>&#160;  <span class="keyword">auto</span>&amp; coarseCentroids = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">quantizer_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1FlatIndex.html#a12058744ffb3fbcbb047872449269c06">getVectorsFloat32Ref</a>();</div>
<div class="line"><a name="l00444"></a><span class="lineno">  444</span>&#160;</div>
<div class="line"><a name="l00445"></a><span class="lineno">  445</span>&#160;  <span class="comment">// Compute ||y_R||^2 by treating</span></div>
<div class="line"><a name="l00446"></a><span class="lineno">  446</span>&#160;  <span class="comment">// (sub q)(code id)(sub dim) as (sub q * code id)(sub dim)</span></div>
<div class="line"><a name="l00447"></a><span class="lineno">  447</span>&#160;  <span class="keyword">auto</span> pqCentroidsMiddleCodeView =</div>
<div class="line"><a name="l00448"></a><span class="lineno">  448</span>&#160;    pqCentroidsMiddleCode_.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a74dbc09519c9c14479b2d18f2e5042e8">view</a>&lt;2&gt;(</div>
<div class="line"><a name="l00449"></a><span class="lineno">  449</span>&#160;      {numSubQuantizers_ * numSubQuantizerCodes_, dimPerSubQuantizer_});</div>
<div class="line"><a name="l00450"></a><span class="lineno">  450</span>&#160;  DeviceTensor&lt;float, 1, true&gt; subQuantizerNorms(</div>
<div class="line"><a name="l00451"></a><span class="lineno">  451</span>&#160;    {numSubQuantizers_ * numSubQuantizerCodes_});</div>
<div class="line"><a name="l00452"></a><span class="lineno">  452</span>&#160;</div>
<div class="line"><a name="l00453"></a><span class="lineno">  453</span>&#160;  runL2Norm(pqCentroidsMiddleCodeView, subQuantizerNorms, <span class="keyword">true</span>,</div>
<div class="line"><a name="l00454"></a><span class="lineno">  454</span>&#160;            <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#aa0354aa570c24e17a9f8a6a45b153ed2">getDefaultStreamCurrentDevice</a>());</div>
<div class="line"><a name="l00455"></a><span class="lineno">  455</span>&#160;</div>
<div class="line"><a name="l00456"></a><span class="lineno">  456</span>&#160;  <span class="comment">// Compute 2 * (y_C|y_R) via batch matrix multiplication</span></div>
<div class="line"><a name="l00457"></a><span class="lineno">  457</span>&#160;  <span class="comment">// batch size (sub q) x {(centroid id)(sub dim) x (code id)(sub dim)&#39;}</span></div>
<div class="line"><a name="l00458"></a><span class="lineno">  458</span>&#160;  <span class="comment">//         =&gt; (sub q) x {(centroid id)(code id)}</span></div>
<div class="line"><a name="l00459"></a><span class="lineno">  459</span>&#160;  <span class="comment">//         =&gt; (sub q)(centroid id)(code id)</span></div>
<div class="line"><a name="l00460"></a><span class="lineno">  460</span>&#160;</div>
<div class="line"><a name="l00461"></a><span class="lineno">  461</span>&#160;  <span class="comment">// View (centroid id)(dim) as</span></div>
<div class="line"><a name="l00462"></a><span class="lineno">  462</span>&#160;  <span class="comment">//      (centroid id)(sub q)(dim)</span></div>
<div class="line"><a name="l00463"></a><span class="lineno">  463</span>&#160;  <span class="comment">// Transpose (centroid id)(sub q)(sub dim) to</span></div>
<div class="line"><a name="l00464"></a><span class="lineno">  464</span>&#160;  <span class="comment">//           (sub q)(centroid id)(sub dim)</span></div>
<div class="line"><a name="l00465"></a><span class="lineno">  465</span>&#160;  <span class="keyword">auto</span> centroidView = coarseCentroids.view&lt;3&gt;(</div>
<div class="line"><a name="l00466"></a><span class="lineno">  466</span>&#160;    {coarseCentroids.getSize(0), numSubQuantizers_, dimPerSubQuantizer_});</div>
<div class="line"><a name="l00467"></a><span class="lineno">  467</span>&#160;  DeviceTensor&lt;float, 3, true&gt; centroidsTransposed(</div>
<div class="line"><a name="l00468"></a><span class="lineno">  468</span>&#160;    {numSubQuantizers_, coarseCentroids.getSize(0), dimPerSubQuantizer_});</div>
<div class="line"><a name="l00469"></a><span class="lineno">  469</span>&#160;</div>
<div class="line"><a name="l00470"></a><span class="lineno">  470</span>&#160;  runTransposeAny(centroidView, 0, 1, centroidsTransposed,</div>
<div class="line"><a name="l00471"></a><span class="lineno">  471</span>&#160;                  <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#aa0354aa570c24e17a9f8a6a45b153ed2">getDefaultStreamCurrentDevice</a>());</div>
<div class="line"><a name="l00472"></a><span class="lineno">  472</span>&#160;</div>
<div class="line"><a name="l00473"></a><span class="lineno">  473</span>&#160;  DeviceTensor&lt;float, 3, true&gt; coarsePQProduct(</div>
<div class="line"><a name="l00474"></a><span class="lineno">  474</span>&#160;    {numSubQuantizers_, coarseCentroids.getSize(0), numSubQuantizerCodes_});</div>
<div class="line"><a name="l00475"></a><span class="lineno">  475</span>&#160;</div>
<div class="line"><a name="l00476"></a><span class="lineno">  476</span>&#160;  runIteratedMatrixMult(coarsePQProduct, <span class="keyword">false</span>,</div>
<div class="line"><a name="l00477"></a><span class="lineno">  477</span>&#160;                        centroidsTransposed, <span class="keyword">false</span>,</div>
<div class="line"><a name="l00478"></a><span class="lineno">  478</span>&#160;                        pqCentroidsMiddleCode_, <span class="keyword">true</span>,</div>
<div class="line"><a name="l00479"></a><span class="lineno">  479</span>&#160;                        2.0f, 0.0f,</div>
<div class="line"><a name="l00480"></a><span class="lineno">  480</span>&#160;                        <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#a00cb7bcbc5f1a00da673f30749149b12">getBlasHandleCurrentDevice</a>(),</div>
<div class="line"><a name="l00481"></a><span class="lineno">  481</span>&#160;                        <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#aa0354aa570c24e17a9f8a6a45b153ed2">getDefaultStreamCurrentDevice</a>());</div>
<div class="line"><a name="l00482"></a><span class="lineno">  482</span>&#160;</div>
<div class="line"><a name="l00483"></a><span class="lineno">  483</span>&#160;  <span class="comment">// Transpose (sub q)(centroid id)(code id) to</span></div>
<div class="line"><a name="l00484"></a><span class="lineno">  484</span>&#160;  <span class="comment">//           (centroid id)(sub q)(code id)</span></div>
<div class="line"><a name="l00485"></a><span class="lineno">  485</span>&#160;  DeviceTensor&lt;float, 3, true&gt; coarsePQProductTransposed(</div>
<div class="line"><a name="l00486"></a><span class="lineno">  486</span>&#160;    {coarseCentroids.getSize(0), numSubQuantizers_, numSubQuantizerCodes_});</div>
<div class="line"><a name="l00487"></a><span class="lineno">  487</span>&#160;  runTransposeAny(coarsePQProduct, 0, 1, coarsePQProductTransposed,</div>
<div class="line"><a name="l00488"></a><span class="lineno">  488</span>&#160;                  <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#aa0354aa570c24e17a9f8a6a45b153ed2">getDefaultStreamCurrentDevice</a>());</div>
<div class="line"><a name="l00489"></a><span class="lineno">  489</span>&#160;</div>
<div class="line"><a name="l00490"></a><span class="lineno">  490</span>&#160;  <span class="comment">// View (centroid id)(sub q)(code id) as</span></div>
<div class="line"><a name="l00491"></a><span class="lineno">  491</span>&#160;  <span class="comment">//      (centroid id)(sub q * code id)</span></div>
<div class="line"><a name="l00492"></a><span class="lineno">  492</span>&#160;  <span class="keyword">auto</span> coarsePQProductTransposedView = coarsePQProductTransposed.view&lt;2&gt;(</div>
<div class="line"><a name="l00493"></a><span class="lineno">  493</span>&#160;    {coarseCentroids.getSize(0), numSubQuantizers_ * numSubQuantizerCodes_});</div>
<div class="line"><a name="l00494"></a><span class="lineno">  494</span>&#160;</div>
<div class="line"><a name="l00495"></a><span class="lineno">  495</span>&#160;  <span class="comment">// Sum || y_R ||^2 + 2 * (y_C|y_R)</span></div>
<div class="line"><a name="l00496"></a><span class="lineno">  496</span>&#160;  <span class="comment">// i.e., add norms                              (sub q * code id)</span></div>
<div class="line"><a name="l00497"></a><span class="lineno">  497</span>&#160;  <span class="comment">// along columns of inner product  (centroid id)(sub q * code id)</span></div>
<div class="line"><a name="l00498"></a><span class="lineno">  498</span>&#160;  runSumAlongColumns(subQuantizerNorms, coarsePQProductTransposedView,</div>
<div class="line"><a name="l00499"></a><span class="lineno">  499</span>&#160;                     <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#aa0354aa570c24e17a9f8a6a45b153ed2">getDefaultStreamCurrentDevice</a>());</div>
<div class="line"><a name="l00500"></a><span class="lineno">  500</span>&#160;</div>
<div class="line"><a name="l00501"></a><span class="lineno">  501</span>&#160;<span class="preprocessor">#ifdef FAISS_USE_FLOAT16</span></div>
<div class="line"><a name="l00502"></a><span class="lineno">  502</span>&#160;<span class="preprocessor"></span>  <span class="keywordflow">if</span> (useFloat16LookupTables_) {</div>
<div class="line"><a name="l00503"></a><span class="lineno">  503</span>&#160;    precomputedCodeHalf_ = toHalf(<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>,</div>
<div class="line"><a name="l00504"></a><span class="lineno">  504</span>&#160;                                  <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#aa0354aa570c24e17a9f8a6a45b153ed2">getDefaultStreamCurrentDevice</a>(),</div>
<div class="line"><a name="l00505"></a><span class="lineno">  505</span>&#160;                                  coarsePQProductTransposed);</div>
<div class="line"><a name="l00506"></a><span class="lineno">  506</span>&#160;    <span class="keywordflow">return</span>;</div>
<div class="line"><a name="l00507"></a><span class="lineno">  507</span>&#160;  }</div>
<div class="line"><a name="l00508"></a><span class="lineno">  508</span>&#160;<span class="preprocessor">#endif</span></div>
<div class="line"><a name="l00509"></a><span class="lineno">  509</span>&#160;<span class="preprocessor"></span></div>
<div class="line"><a name="l00510"></a><span class="lineno">  510</span>&#160;  <span class="comment">// We added into the view, so `coarsePQProductTransposed` is now our</span></div>
<div class="line"><a name="l00511"></a><span class="lineno">  511</span>&#160;  <span class="comment">// precomputed term 2.</span></div>
<div class="line"><a name="l00512"></a><span class="lineno">  512</span>&#160;  precomputedCode_ = std::move(coarsePQProductTransposed);</div>
<div class="line"><a name="l00513"></a><span class="lineno">  513</span>&#160;}</div>
<div class="line"><a name="l00514"></a><span class="lineno">  514</span>&#160;</div>
<div class="line"><a name="l00515"></a><span class="lineno">  515</span>&#160;<span class="keywordtype">void</span></div>
<div class="line"><a name="l00516"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1IVFPQ.html#ab0c458aab9a3d903f31b0e63ce16e623">  516</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#ab0c458aab9a3d903f31b0e63ce16e623">IVFPQ::query</a>(<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;float, 2, true&gt;</a>&amp; queries,</div>
<div class="line"><a name="l00517"></a><span class="lineno">  517</span>&#160;             <span class="keywordtype">int</span> nprobe,</div>
<div class="line"><a name="l00518"></a><span class="lineno">  518</span>&#160;             <span class="keywordtype">int</span> k,</div>
<div class="line"><a name="l00519"></a><span class="lineno">  519</span>&#160;             <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;float, 2, true&gt;</a>&amp; outDistances,</div>
<div class="line"><a name="l00520"></a><span class="lineno">  520</span>&#160;             <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;long, 2, true&gt;</a>&amp; outIndices) {</div>
<div class="line"><a name="l00521"></a><span class="lineno">  521</span>&#160;  <span class="comment">// Validate these at a top level</span></div>
<div class="line"><a name="l00522"></a><span class="lineno">  522</span>&#160;  FAISS_ASSERT(nprobe &lt;= 1024);</div>
<div class="line"><a name="l00523"></a><span class="lineno">  523</span>&#160;  FAISS_ASSERT(k &lt;= 1024);</div>
<div class="line"><a name="l00524"></a><span class="lineno">  524</span>&#160;</div>
<div class="line"><a name="l00525"></a><span class="lineno">  525</span>&#160;  <span class="keyword">auto</span>&amp; mem = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#a1dda2dc3db1bd62cde6657c5cdbfb6e1">getMemoryManagerCurrentDevice</a>();</div>
<div class="line"><a name="l00526"></a><span class="lineno">  526</span>&#160;  <span class="keyword">auto</span> stream = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#aa0354aa570c24e17a9f8a6a45b153ed2">getDefaultStreamCurrentDevice</a>();</div>
<div class="line"><a name="l00527"></a><span class="lineno">  527</span>&#160;  nprobe = std::min(nprobe, <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">quantizer_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1FlatIndex.html#a6988df17792dae30f24cc859728777e6">getSize</a>());</div>
<div class="line"><a name="l00528"></a><span class="lineno">  528</span>&#160;</div>
<div class="line"><a name="l00529"></a><span class="lineno">  529</span>&#160;  FAISS_ASSERT(queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(1) == <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#aba3e3cfa469e5187f2d553fff10e0250">dim_</a>);</div>
<div class="line"><a name="l00530"></a><span class="lineno">  530</span>&#160;  FAISS_ASSERT(outDistances.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0) == queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0));</div>
<div class="line"><a name="l00531"></a><span class="lineno">  531</span>&#160;  FAISS_ASSERT(outIndices.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0) == queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0));</div>
<div class="line"><a name="l00532"></a><span class="lineno">  532</span>&#160;</div>
<div class="line"><a name="l00533"></a><span class="lineno">  533</span>&#160;  <span class="comment">// Reserve space for the closest coarse centroids</span></div>
<div class="line"><a name="l00534"></a><span class="lineno">  534</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;float, 2, true&gt;</a></div>
<div class="line"><a name="l00535"></a><span class="lineno">  535</span>&#160;    coarseDistances(mem, {queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0), nprobe}, stream);</div>
<div class="line"><a name="l00536"></a><span class="lineno">  536</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;int, 2, true&gt;</a></div>
<div class="line"><a name="l00537"></a><span class="lineno">  537</span>&#160;    coarseIndices(mem, {queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0), nprobe}, stream);</div>
<div class="line"><a name="l00538"></a><span class="lineno">  538</span>&#160;</div>
<div class="line"><a name="l00539"></a><span class="lineno">  539</span>&#160;  <span class="comment">// Find the `nprobe` closest coarse centroids; we can use int</span></div>
<div class="line"><a name="l00540"></a><span class="lineno">  540</span>&#160;  <span class="comment">// indices both internally and externally</span></div>
<div class="line"><a name="l00541"></a><span class="lineno">  541</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">quantizer_</a>-&gt;query(queries,</div>
<div class="line"><a name="l00542"></a><span class="lineno">  542</span>&#160;                    nprobe,</div>
<div class="line"><a name="l00543"></a><span class="lineno">  543</span>&#160;                    coarseDistances,</div>
<div class="line"><a name="l00544"></a><span class="lineno">  544</span>&#160;                    coarseIndices,</div>
<div class="line"><a name="l00545"></a><span class="lineno">  545</span>&#160;                    <span class="keyword">true</span>);</div>
<div class="line"><a name="l00546"></a><span class="lineno">  546</span>&#160;</div>
<div class="line"><a name="l00547"></a><span class="lineno">  547</span>&#160;  <span class="keywordflow">if</span> (precomputedCodes_) {</div>
<div class="line"><a name="l00548"></a><span class="lineno">  548</span>&#160;    runPQPrecomputedCodes_(queries,</div>
<div class="line"><a name="l00549"></a><span class="lineno">  549</span>&#160;                           coarseDistances,</div>
<div class="line"><a name="l00550"></a><span class="lineno">  550</span>&#160;                           coarseIndices,</div>
<div class="line"><a name="l00551"></a><span class="lineno">  551</span>&#160;                           k,</div>
<div class="line"><a name="l00552"></a><span class="lineno">  552</span>&#160;                           outDistances,</div>
<div class="line"><a name="l00553"></a><span class="lineno">  553</span>&#160;                           outIndices);</div>
<div class="line"><a name="l00554"></a><span class="lineno">  554</span>&#160;  } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00555"></a><span class="lineno">  555</span>&#160;    runPQNoPrecomputedCodes_(queries,</div>
<div class="line"><a name="l00556"></a><span class="lineno">  556</span>&#160;                             coarseDistances,</div>
<div class="line"><a name="l00557"></a><span class="lineno">  557</span>&#160;                             coarseIndices,</div>
<div class="line"><a name="l00558"></a><span class="lineno">  558</span>&#160;                             k,</div>
<div class="line"><a name="l00559"></a><span class="lineno">  559</span>&#160;                             outDistances,</div>
<div class="line"><a name="l00560"></a><span class="lineno">  560</span>&#160;                             outIndices);</div>
<div class="line"><a name="l00561"></a><span class="lineno">  561</span>&#160;  }</div>
<div class="line"><a name="l00562"></a><span class="lineno">  562</span>&#160;</div>
<div class="line"><a name="l00563"></a><span class="lineno">  563</span>&#160;  <span class="comment">// If the GPU isn&#39;t storing indices (they are on the CPU side), we</span></div>
<div class="line"><a name="l00564"></a><span class="lineno">  564</span>&#160;  <span class="comment">// need to perform the re-mapping here</span></div>
<div class="line"><a name="l00565"></a><span class="lineno">  565</span>&#160;  <span class="comment">// FIXME: we might ultimately be calling this function with inputs</span></div>
<div class="line"><a name="l00566"></a><span class="lineno">  566</span>&#160;  <span class="comment">// from the CPU, these are unnecessary copies</span></div>
<div class="line"><a name="l00567"></a><span class="lineno">  567</span>&#160;  <span class="keywordflow">if</span> (<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a> == INDICES_CPU) {</div>
<div class="line"><a name="l00568"></a><span class="lineno">  568</span>&#160;    <a class="code" href="classfaiss_1_1gpu_1_1HostTensor.html">HostTensor&lt;long, 2, true&gt;</a> hostOutIndices(outIndices, stream);</div>
<div class="line"><a name="l00569"></a><span class="lineno">  569</span>&#160;</div>
<div class="line"><a name="l00570"></a><span class="lineno">  570</span>&#160;    ivfOffsetToUserIndex(hostOutIndices.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">data</a>(),</div>
<div class="line"><a name="l00571"></a><span class="lineno">  571</span>&#160;                         <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#accc4d96c14643e5f471220cb1e92ac70">numLists_</a>,</div>
<div class="line"><a name="l00572"></a><span class="lineno">  572</span>&#160;                         hostOutIndices.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0),</div>
<div class="line"><a name="l00573"></a><span class="lineno">  573</span>&#160;                         hostOutIndices.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(1),</div>
<div class="line"><a name="l00574"></a><span class="lineno">  574</span>&#160;                         <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a53f3c382a79b7f89630a85dfbc3a1fed">listOffsetToUserIndex_</a>);</div>
<div class="line"><a name="l00575"></a><span class="lineno">  575</span>&#160;</div>
<div class="line"><a name="l00576"></a><span class="lineno">  576</span>&#160;    <span class="comment">// Copy back to GPU, since the input to this function is on the</span></div>
<div class="line"><a name="l00577"></a><span class="lineno">  577</span>&#160;    <span class="comment">// GPU</span></div>
<div class="line"><a name="l00578"></a><span class="lineno">  578</span>&#160;    outIndices.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6dc00c182a92389b74c89ba7fcab40d3">copyFrom</a>(hostOutIndices, stream);</div>
<div class="line"><a name="l00579"></a><span class="lineno">  579</span>&#160;  }</div>
<div class="line"><a name="l00580"></a><span class="lineno">  580</span>&#160;}</div>
<div class="line"><a name="l00581"></a><span class="lineno">  581</span>&#160;</div>
<div class="line"><a name="l00582"></a><span class="lineno">  582</span>&#160;std::vector&lt;unsigned char&gt;</div>
<div class="line"><a name="l00583"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1IVFPQ.html#a5b349dd021b11b5f48531825359b0657">  583</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#a5b349dd021b11b5f48531825359b0657">IVFPQ::getListCodes</a>(<span class="keywordtype">int</span> listId)<span class="keyword"> const </span>{</div>
<div class="line"><a name="l00584"></a><span class="lineno">  584</span>&#160;  FAISS_ASSERT(listId &lt; <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a2facc7285107de1f24d3471cbcf15f26">deviceListData_</a>.size());</div>
<div class="line"><a name="l00585"></a><span class="lineno">  585</span>&#160;</div>
<div class="line"><a name="l00586"></a><span class="lineno">  586</span>&#160;  <span class="keywordflow">return</span> <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a2facc7285107de1f24d3471cbcf15f26">deviceListData_</a>[listId]-&gt;copyToHost&lt;<span class="keywordtype">unsigned</span> <span class="keywordtype">char</span>&gt;(</div>
<div class="line"><a name="l00587"></a><span class="lineno">  587</span>&#160;    <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#aa0354aa570c24e17a9f8a6a45b153ed2">getDefaultStreamCurrentDevice</a>());</div>
<div class="line"><a name="l00588"></a><span class="lineno">  588</span>&#160;}</div>
<div class="line"><a name="l00589"></a><span class="lineno">  589</span>&#160;</div>
<div class="line"><a name="l00590"></a><span class="lineno">  590</span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;float, 3, true&gt;</a></div>
<div class="line"><a name="l00591"></a><span class="lineno"><a class="line" href="classfaiss_1_1gpu_1_1IVFPQ.html#a3e8bff50f894c243c62e832f923e88e7">  591</a></span>&#160;<a class="code" href="classfaiss_1_1gpu_1_1IVFPQ.html#a3e8bff50f894c243c62e832f923e88e7">IVFPQ::getPQCentroids</a>() {</div>
<div class="line"><a name="l00592"></a><span class="lineno">  592</span>&#160;  <span class="keywordflow">return</span> pqCentroidsMiddleCode_;</div>
<div class="line"><a name="l00593"></a><span class="lineno">  593</span>&#160;}</div>
<div class="line"><a name="l00594"></a><span class="lineno">  594</span>&#160;</div>
<div class="line"><a name="l00595"></a><span class="lineno">  595</span>&#160;<span class="keywordtype">void</span></div>
<div class="line"><a name="l00596"></a><span class="lineno">  596</span>&#160;IVFPQ::runPQPrecomputedCodes_(</div>
<div class="line"><a name="l00597"></a><span class="lineno">  597</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;float, 2, true&gt;</a>&amp; queries,</div>
<div class="line"><a name="l00598"></a><span class="lineno">  598</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;float, 2, true&gt;</a>&amp; coarseDistances,</div>
<div class="line"><a name="l00599"></a><span class="lineno">  599</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;int, 2, true&gt;</a>&amp; coarseIndices,</div>
<div class="line"><a name="l00600"></a><span class="lineno">  600</span>&#160;  <span class="keywordtype">int</span> k,</div>
<div class="line"><a name="l00601"></a><span class="lineno">  601</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;float, 2, true&gt;</a>&amp; outDistances,</div>
<div class="line"><a name="l00602"></a><span class="lineno">  602</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1Tensor.html">Tensor&lt;long, 2, true&gt;</a>&amp; outIndices) {</div>
<div class="line"><a name="l00603"></a><span class="lineno">  603</span>&#160;  <span class="keyword">auto</span>&amp; mem = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#a1dda2dc3db1bd62cde6657c5cdbfb6e1">getMemoryManagerCurrentDevice</a>();</div>
<div class="line"><a name="l00604"></a><span class="lineno">  604</span>&#160;  <span class="keyword">auto</span> stream = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#aa0354aa570c24e17a9f8a6a45b153ed2">getDefaultStreamCurrentDevice</a>();</div>
<div class="line"><a name="l00605"></a><span class="lineno">  605</span>&#160;</div>
<div class="line"><a name="l00606"></a><span class="lineno">  606</span>&#160;  <span class="comment">// Compute precomputed code term 3, - 2 * (x|y_R)</span></div>
<div class="line"><a name="l00607"></a><span class="lineno">  607</span>&#160;  <span class="comment">// This is done via batch MM</span></div>
<div class="line"><a name="l00608"></a><span class="lineno">  608</span>&#160;  <span class="comment">// {sub q} x {(query id)(sub dim) * (code id)(sub dim)&#39;} =&gt;</span></div>
<div class="line"><a name="l00609"></a><span class="lineno">  609</span>&#160;  <span class="comment">// {sub q} x {(query id)(code id)}</span></div>
<div class="line"><a name="l00610"></a><span class="lineno">  610</span>&#160;  <a class="code" href="classfaiss_1_1gpu_1_1DeviceTensor.html">DeviceTensor&lt;float, 3, true&gt;</a> term3Transposed(</div>
<div class="line"><a name="l00611"></a><span class="lineno">  611</span>&#160;    mem,</div>
<div class="line"><a name="l00612"></a><span class="lineno">  612</span>&#160;    {queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0), numSubQuantizers_, numSubQuantizerCodes_},</div>
<div class="line"><a name="l00613"></a><span class="lineno">  613</span>&#160;    stream);</div>
<div class="line"><a name="l00614"></a><span class="lineno">  614</span>&#160;</div>
<div class="line"><a name="l00615"></a><span class="lineno">  615</span>&#160;  <span class="comment">// These allocations within are only temporary, so release them when</span></div>
<div class="line"><a name="l00616"></a><span class="lineno">  616</span>&#160;  <span class="comment">// we&#39;re done to maximize free space</span></div>
<div class="line"><a name="l00617"></a><span class="lineno">  617</span>&#160;  {</div>
<div class="line"><a name="l00618"></a><span class="lineno">  618</span>&#160;    <span class="keyword">auto</span> querySubQuantizerView = queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a74dbc09519c9c14479b2d18f2e5042e8">view</a>&lt;3&gt;(</div>
<div class="line"><a name="l00619"></a><span class="lineno">  619</span>&#160;      {queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0), numSubQuantizers_, dimPerSubQuantizer_});</div>
<div class="line"><a name="l00620"></a><span class="lineno">  620</span>&#160;    DeviceTensor&lt;float, 3, true&gt; queriesTransposed(</div>
<div class="line"><a name="l00621"></a><span class="lineno">  621</span>&#160;      mem,</div>
<div class="line"><a name="l00622"></a><span class="lineno">  622</span>&#160;      {numSubQuantizers_, queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0), dimPerSubQuantizer_},</div>
<div class="line"><a name="l00623"></a><span class="lineno">  623</span>&#160;      stream);</div>
<div class="line"><a name="l00624"></a><span class="lineno">  624</span>&#160;    runTransposeAny(querySubQuantizerView, 0, 1, queriesTransposed, stream);</div>
<div class="line"><a name="l00625"></a><span class="lineno">  625</span>&#160;</div>
<div class="line"><a name="l00626"></a><span class="lineno">  626</span>&#160;    DeviceTensor&lt;float, 3, true&gt; term3(</div>
<div class="line"><a name="l00627"></a><span class="lineno">  627</span>&#160;      mem,</div>
<div class="line"><a name="l00628"></a><span class="lineno">  628</span>&#160;      {numSubQuantizers_, queries.<a class="code" href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">getSize</a>(0), numSubQuantizerCodes_},</div>
<div class="line"><a name="l00629"></a><span class="lineno">  629</span>&#160;      stream);</div>
<div class="line"><a name="l00630"></a><span class="lineno">  630</span>&#160;</div>
<div class="line"><a name="l00631"></a><span class="lineno">  631</span>&#160;    runIteratedMatrixMult(term3, <span class="keyword">false</span>,</div>
<div class="line"><a name="l00632"></a><span class="lineno">  632</span>&#160;                          queriesTransposed, <span class="keyword">false</span>,</div>
<div class="line"><a name="l00633"></a><span class="lineno">  633</span>&#160;                          pqCentroidsMiddleCode_, <span class="keyword">true</span>,</div>
<div class="line"><a name="l00634"></a><span class="lineno">  634</span>&#160;                          -2.0f, 0.0f,</div>
<div class="line"><a name="l00635"></a><span class="lineno">  635</span>&#160;                          <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1GpuResources.html#a00cb7bcbc5f1a00da673f30749149b12">getBlasHandleCurrentDevice</a>(),</div>
<div class="line"><a name="l00636"></a><span class="lineno">  636</span>&#160;                          stream);</div>
<div class="line"><a name="l00637"></a><span class="lineno">  637</span>&#160;</div>
<div class="line"><a name="l00638"></a><span class="lineno">  638</span>&#160;    runTransposeAny(term3, 0, 1, term3Transposed, stream);</div>
<div class="line"><a name="l00639"></a><span class="lineno">  639</span>&#160;  }</div>
<div class="line"><a name="l00640"></a><span class="lineno">  640</span>&#160;</div>
<div class="line"><a name="l00641"></a><span class="lineno">  641</span>&#160;  NoTypeTensor&lt;3, true&gt; term2;</div>
<div class="line"><a name="l00642"></a><span class="lineno">  642</span>&#160;  NoTypeTensor&lt;3, true&gt; term3;</div>
<div class="line"><a name="l00643"></a><span class="lineno">  643</span>&#160;<span class="preprocessor">#ifdef FAISS_USE_FLOAT16</span></div>
<div class="line"><a name="l00644"></a><span class="lineno">  644</span>&#160;<span class="preprocessor"></span>  DeviceTensor&lt;half, 3, true&gt; term3Half;</div>
<div class="line"><a name="l00645"></a><span class="lineno">  645</span>&#160;</div>
<div class="line"><a name="l00646"></a><span class="lineno">  646</span>&#160;  <span class="keywordflow">if</span> (useFloat16LookupTables_) {</div>
<div class="line"><a name="l00647"></a><span class="lineno">  647</span>&#160;    term3Half = toHalf(<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>, stream, term3Transposed);</div>
<div class="line"><a name="l00648"></a><span class="lineno">  648</span>&#160;    term2 = NoTypeTensor&lt;3, true&gt;(precomputedCodeHalf_);</div>
<div class="line"><a name="l00649"></a><span class="lineno">  649</span>&#160;    term3 = NoTypeTensor&lt;3, true&gt;(term3Half);</div>
<div class="line"><a name="l00650"></a><span class="lineno">  650</span>&#160;  }</div>
<div class="line"><a name="l00651"></a><span class="lineno">  651</span>&#160;<span class="preprocessor">#endif</span></div>
<div class="line"><a name="l00652"></a><span class="lineno">  652</span>&#160;<span class="preprocessor"></span></div>
<div class="line"><a name="l00653"></a><span class="lineno">  653</span>&#160;  <span class="keywordflow">if</span> (!useFloat16LookupTables_) {</div>
<div class="line"><a name="l00654"></a><span class="lineno">  654</span>&#160;    term2 = NoTypeTensor&lt;3, true&gt;(precomputedCode_);</div>
<div class="line"><a name="l00655"></a><span class="lineno">  655</span>&#160;    term3 = NoTypeTensor&lt;3, true&gt;(term3Transposed);</div>
<div class="line"><a name="l00656"></a><span class="lineno">  656</span>&#160;  }</div>
<div class="line"><a name="l00657"></a><span class="lineno">  657</span>&#160;</div>
<div class="line"><a name="l00658"></a><span class="lineno">  658</span>&#160;  runPQScanMultiPassPrecomputed(queries,</div>
<div class="line"><a name="l00659"></a><span class="lineno">  659</span>&#160;                                coarseDistances, <span class="comment">// term 1</span></div>
<div class="line"><a name="l00660"></a><span class="lineno">  660</span>&#160;                                term2, <span class="comment">// term 2</span></div>
<div class="line"><a name="l00661"></a><span class="lineno">  661</span>&#160;                                term3, <span class="comment">// term 3</span></div>
<div class="line"><a name="l00662"></a><span class="lineno">  662</span>&#160;                                coarseIndices,</div>
<div class="line"><a name="l00663"></a><span class="lineno">  663</span>&#160;                                useFloat16LookupTables_,</div>
<div class="line"><a name="l00664"></a><span class="lineno">  664</span>&#160;                                <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a319568b832518392fed33ea4f8bfc613">bytesPerVector_</a>,</div>
<div class="line"><a name="l00665"></a><span class="lineno">  665</span>&#160;                                numSubQuantizers_,</div>
<div class="line"><a name="l00666"></a><span class="lineno">  666</span>&#160;                                numSubQuantizerCodes_,</div>
<div class="line"><a name="l00667"></a><span class="lineno">  667</span>&#160;                                <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a96240a08b42bd1913e2286d7d514fc56">deviceListDataPointers_</a>,</div>
<div class="line"><a name="l00668"></a><span class="lineno">  668</span>&#160;                                <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a9aedcf0e6a20b908980ae96d73461f4c">deviceListIndexPointers_</a>,</div>
<div class="line"><a name="l00669"></a><span class="lineno">  669</span>&#160;                                <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a>,</div>
<div class="line"><a name="l00670"></a><span class="lineno">  670</span>&#160;                                <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a3a1c2031a4763f7d55bc8a400c63af66">deviceListLengths_</a>,</div>
<div class="line"><a name="l00671"></a><span class="lineno">  671</span>&#160;                                <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#ae25ea0901fb628844868413f51c85bda">maxListLength_</a>,</div>
<div class="line"><a name="l00672"></a><span class="lineno">  672</span>&#160;                                k,</div>
<div class="line"><a name="l00673"></a><span class="lineno">  673</span>&#160;                                outDistances,</div>
<div class="line"><a name="l00674"></a><span class="lineno">  674</span>&#160;                                outIndices,</div>
<div class="line"><a name="l00675"></a><span class="lineno">  675</span>&#160;                                <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>);</div>
<div class="line"><a name="l00676"></a><span class="lineno">  676</span>&#160;}</div>
<div class="line"><a name="l00677"></a><span class="lineno">  677</span>&#160;</div>
<div class="line"><a name="l00678"></a><span class="lineno">  678</span>&#160;<span class="keywordtype">void</span></div>
<div class="line"><a name="l00679"></a><span class="lineno">  679</span>&#160;IVFPQ::runPQNoPrecomputedCodes_(</div>
<div class="line"><a name="l00680"></a><span class="lineno">  680</span>&#160;  Tensor&lt;float, 2, true&gt;&amp; queries,</div>
<div class="line"><a name="l00681"></a><span class="lineno">  681</span>&#160;  DeviceTensor&lt;float, 2, true&gt;&amp; coarseDistances,</div>
<div class="line"><a name="l00682"></a><span class="lineno">  682</span>&#160;  DeviceTensor&lt;int, 2, true&gt;&amp; coarseIndices,</div>
<div class="line"><a name="l00683"></a><span class="lineno">  683</span>&#160;  <span class="keywordtype">int</span> k,</div>
<div class="line"><a name="l00684"></a><span class="lineno">  684</span>&#160;  Tensor&lt;float, 2, true&gt;&amp; outDistances,</div>
<div class="line"><a name="l00685"></a><span class="lineno">  685</span>&#160;  Tensor&lt;long, 2, true&gt;&amp; outIndices) {</div>
<div class="line"><a name="l00686"></a><span class="lineno">  686</span>&#160;  FAISS_ASSERT(!<a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">quantizer_</a>-&gt;getUseFloat16());</div>
<div class="line"><a name="l00687"></a><span class="lineno">  687</span>&#160;  <span class="keyword">auto</span>&amp; coarseCentroids = <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">quantizer_</a>-&gt;<a class="code" href="classfaiss_1_1gpu_1_1FlatIndex.html#a12058744ffb3fbcbb047872449269c06">getVectorsFloat32Ref</a>();</div>
<div class="line"><a name="l00688"></a><span class="lineno">  688</span>&#160;</div>
<div class="line"><a name="l00689"></a><span class="lineno">  689</span>&#160;  runPQScanMultiPassNoPrecomputed(queries,</div>
<div class="line"><a name="l00690"></a><span class="lineno">  690</span>&#160;                                  coarseCentroids,</div>
<div class="line"><a name="l00691"></a><span class="lineno">  691</span>&#160;                                  pqCentroidsInnermostCode_,</div>
<div class="line"><a name="l00692"></a><span class="lineno">  692</span>&#160;                                  coarseIndices,</div>
<div class="line"><a name="l00693"></a><span class="lineno">  693</span>&#160;                                  useFloat16LookupTables_,</div>
<div class="line"><a name="l00694"></a><span class="lineno">  694</span>&#160;                                  <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a319568b832518392fed33ea4f8bfc613">bytesPerVector_</a>,</div>
<div class="line"><a name="l00695"></a><span class="lineno">  695</span>&#160;                                  numSubQuantizers_,</div>
<div class="line"><a name="l00696"></a><span class="lineno">  696</span>&#160;                                  numSubQuantizerCodes_,</div>
<div class="line"><a name="l00697"></a><span class="lineno">  697</span>&#160;                                  <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a96240a08b42bd1913e2286d7d514fc56">deviceListDataPointers_</a>,</div>
<div class="line"><a name="l00698"></a><span class="lineno">  698</span>&#160;                                  <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a9aedcf0e6a20b908980ae96d73461f4c">deviceListIndexPointers_</a>,</div>
<div class="line"><a name="l00699"></a><span class="lineno">  699</span>&#160;                                  <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">indicesOptions_</a>,</div>
<div class="line"><a name="l00700"></a><span class="lineno">  700</span>&#160;                                  <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a3a1c2031a4763f7d55bc8a400c63af66">deviceListLengths_</a>,</div>
<div class="line"><a name="l00701"></a><span class="lineno">  701</span>&#160;                                  <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#ae25ea0901fb628844868413f51c85bda">maxListLength_</a>,</div>
<div class="line"><a name="l00702"></a><span class="lineno">  702</span>&#160;                                  k,</div>
<div class="line"><a name="l00703"></a><span class="lineno">  703</span>&#160;                                  outDistances,</div>
<div class="line"><a name="l00704"></a><span class="lineno">  704</span>&#160;                                  outIndices,</div>
<div class="line"><a name="l00705"></a><span class="lineno">  705</span>&#160;                                  <a class="code" href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">resources_</a>);</div>
<div class="line"><a name="l00706"></a><span class="lineno">  706</span>&#160;}</div>
<div class="line"><a name="l00707"></a><span class="lineno">  707</span>&#160;</div>
<div class="line"><a name="l00708"></a><span class="lineno">  708</span>&#160;} } <span class="comment">// namespace</span></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_accc4d96c14643e5f471220cb1e92ac70"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#accc4d96c14643e5f471220cb1e92ac70">faiss::gpu::IVFBase::numLists_</a></div><div class="ttdeci">const int numLists_</div><div class="ttdoc">Number of inverted lists we maintain. </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00091">IVFBase.cuh:91</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_ae25ea0901fb628844868413f51c85bda"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#ae25ea0901fb628844868413f51c85bda">faiss::gpu::IVFBase::maxListLength_</a></div><div class="ttdeci">int maxListLength_</div><div class="ttdoc">Maximum list length seen. </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00115">IVFBase.cuh:115</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1GpuResources_html_aa0354aa570c24e17a9f8a6a45b153ed2"><div class="ttname"><a href="classfaiss_1_1gpu_1_1GpuResources.html#aa0354aa570c24e17a9f8a6a45b153ed2">faiss::gpu::GpuResources::getDefaultStreamCurrentDevice</a></div><div class="ttdeci">cudaStream_t getDefaultStreamCurrentDevice()</div><div class="ttdoc">Calls getDefaultStream with the current device. </div><div class="ttdef"><b>Definition:</b> <a href="GpuResources_8cpp_source.html#l00025">GpuResources.cpp:25</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFPQ_html_a9992b38226dc8f92ca2691582fabb675"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFPQ.html#a9992b38226dc8f92ca2691582fabb675">faiss::gpu::IVFPQ::addCodeVectorsFromCpu</a></div><div class="ttdeci">void addCodeVectorsFromCpu(int listId, const void *codes, const long *indices, size_t numVecs)</div><div class="ttdef"><b>Definition:</b> <a href="IVFPQ_8cu_source.html#l00346">IVFPQ.cu:346</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1FlatIndex_html_a6988df17792dae30f24cc859728777e6"><div class="ttname"><a href="classfaiss_1_1gpu_1_1FlatIndex.html#a6988df17792dae30f24cc859728777e6">faiss::gpu::FlatIndex::getSize</a></div><div class="ttdeci">int getSize() const </div><div class="ttdoc">Returns the number of vectors we contain. </div><div class="ttdef"><b>Definition:</b> <a href="FlatIndex_8cu_source.html#l00047">FlatIndex.cu:47</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_a53f3c382a79b7f89630a85dfbc3a1fed"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#a53f3c382a79b7f89630a85dfbc3a1fed">faiss::gpu::IVFBase::listOffsetToUserIndex_</a></div><div class="ttdeci">std::vector&lt; std::vector&lt; long &gt; &gt; listOffsetToUserIndex_</div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00127">IVFBase.cuh:127</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1FlatIndex_html"><div class="ttname"><a href="classfaiss_1_1gpu_1_1FlatIndex.html">faiss::gpu::FlatIndex</a></div><div class="ttdoc">Holder of GPU resources for a particular flat index. </div><div class="ttdef"><b>Definition:</b> <a href="FlatIndex_8cuh_source.html#l00023">FlatIndex.cuh:23</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a74dbc09519c9c14479b2d18f2e5042e8"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a74dbc09519c9c14479b2d18f2e5042e8">faiss::gpu::Tensor::view</a></div><div class="ttdeci">__host__ __device__ Tensor&lt; T, SubDim, InnerContig, IndexT, PtrTraits &gt; view(DataPtrType at)</div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00629">Tensor-inl.cuh:629</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html">faiss::gpu::IVFBase</a></div><div class="ttdoc">Base inverted list functionality for IVFFlat and IVFPQ. </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00027">IVFBase.cuh:27</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1GpuResources_html"><div class="ttname"><a href="classfaiss_1_1gpu_1_1GpuResources.html">faiss::gpu::GpuResources</a></div><div class="ttdef"><b>Definition:</b> <a href="GpuResources_8h_source.html#l00023">GpuResources.h:23</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_a3a1c2031a4763f7d55bc8a400c63af66"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#a3a1c2031a4763f7d55bc8a400c63af66">faiss::gpu::IVFBase::deviceListLengths_</a></div><div class="ttdeci">thrust::device_vector&lt; int &gt; deviceListLengths_</div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00112">IVFBase.cuh:112</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFPQ_html_adb58eeacdceb0e0fde1820ca7f116e05"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFPQ.html#adb58eeacdceb0e0fde1820ca7f116e05">faiss::gpu::IVFPQ::isSupportedPQCodeLength</a></div><div class="ttdeci">static bool isSupportedPQCodeLength(int size)</div><div class="ttdoc">Returns true if we support PQ in this size. </div><div class="ttdef"><b>Definition:</b> <a href="IVFPQ_8cu_source.html#l00072">IVFPQ.cu:72</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_a9aedcf0e6a20b908980ae96d73461f4c"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#a9aedcf0e6a20b908980ae96d73461f4c">faiss::gpu::IVFBase::deviceListIndexPointers_</a></div><div class="ttdeci">thrust::device_vector&lt; void * &gt; deviceListIndexPointers_</div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00108">IVFBase.cuh:108</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1GpuResources_html_a00cb7bcbc5f1a00da673f30749149b12"><div class="ttname"><a href="classfaiss_1_1gpu_1_1GpuResources.html#a00cb7bcbc5f1a00da673f30749149b12">faiss::gpu::GpuResources::getBlasHandleCurrentDevice</a></div><div class="ttdeci">cublasHandle_t getBlasHandleCurrentDevice()</div><div class="ttdoc">Calls getBlasHandle with the current device. </div><div class="ttdef"><b>Definition:</b> <a href="GpuResources_8cpp_source.html#l00020">GpuResources.cpp:20</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1GpuResources_html_a1dda2dc3db1bd62cde6657c5cdbfb6e1"><div class="ttname"><a href="classfaiss_1_1gpu_1_1GpuResources.html#a1dda2dc3db1bd62cde6657c5cdbfb6e1">faiss::gpu::GpuResources::getMemoryManagerCurrentDevice</a></div><div class="ttdeci">DeviceMemory &amp; getMemoryManagerCurrentDevice()</div><div class="ttdoc">Calls getMemoryManager for the current device. </div><div class="ttdef"><b>Definition:</b> <a href="GpuResources_8cpp_source.html#l00035">GpuResources.cpp:35</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFPQ_html_ab1e07b04b25569cc58c5f3f033f4dab3"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFPQ.html#ab1e07b04b25569cc58c5f3f033f4dab3">faiss::gpu::IVFPQ::classifyAndAddVectors</a></div><div class="ttdeci">int classifyAndAddVectors(Tensor&lt; float, 2, true &gt; &amp;vecs, Tensor&lt; long, 1, true &gt; &amp;indices)</div><div class="ttdef"><b>Definition:</b> <a href="IVFPQ_8cu_source.html#l00120">IVFPQ.cu:120</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6dc00c182a92389b74c89ba7fcab40d3"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6dc00c182a92389b74c89ba7fcab40d3">faiss::gpu::Tensor::copyFrom</a></div><div class="ttdeci">__host__ void copyFrom(Tensor&lt; T, Dim, InnerContig, IndexT, PtrTraits &gt; &amp;t, cudaStream_t stream)</div><div class="ttdoc">Copies a tensor into ourselves; sizes must match. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor-inl_8cuh_source.html#l00132">Tensor-inl.cuh:132</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFPQ_html_ab0c458aab9a3d903f31b0e63ce16e623"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFPQ.html#ab0c458aab9a3d903f31b0e63ce16e623">faiss::gpu::IVFPQ::query</a></div><div class="ttdeci">void query(Tensor&lt; float, 2, true &gt; &amp;queries, int nprobe, int k, Tensor&lt; float, 2, true &gt; &amp;outDistances, Tensor&lt; long, 2, true &gt; &amp;outIndices)</div><div class="ttdef"><b>Definition:</b> <a href="IVFPQ_8cu_source.html#l00516">IVFPQ.cu:516</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFPQ_html_a3e8bff50f894c243c62e832f923e88e7"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFPQ.html#a3e8bff50f894c243c62e832f923e88e7">faiss::gpu::IVFPQ::getPQCentroids</a></div><div class="ttdeci">Tensor&lt; float, 3, true &gt; getPQCentroids()</div><div class="ttdef"><b>Definition:</b> <a href="IVFPQ_8cu_source.html#l00591">IVFPQ.cu:591</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_a878114abdba07c9cf7735f9c0ed594c3"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#a878114abdba07c9cf7735f9c0ed594c3">faiss::gpu::IVFBase::quantizer_</a></div><div class="ttdeci">FlatIndex * quantizer_</div><div class="ttdoc">Quantizer object. </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00085">IVFBase.cuh:85</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFPQ_html_adcee5dbf48c3cb6b8a67f5f392e155fd"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFPQ.html#adcee5dbf48c3cb6b8a67f5f392e155fd">faiss::gpu::IVFPQ::setPrecomputedCodes</a></div><div class="ttdeci">void setPrecomputedCodes(bool enable)</div><div class="ttdoc">Enable or disable pre-computed codes. </div><div class="ttdef"><b>Definition:</b> <a href="IVFPQ_8cu_source.html#l00102">IVFPQ.cu:102</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFPQ_html_a5b349dd021b11b5f48531825359b0657"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFPQ.html#a5b349dd021b11b5f48531825359b0657">faiss::gpu::IVFPQ::getListCodes</a></div><div class="ttdeci">std::vector&lt; unsigned char &gt; getListCodes(int listId) const </div><div class="ttdoc">Return the list codes of a particular list back to the CPU. </div><div class="ttdef"><b>Definition:</b> <a href="IVFPQ_8cu_source.html#l00583">IVFPQ.cu:583</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a6699c311648457f257afa340c61f417c"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a6699c311648457f257afa340c61f417c">faiss::gpu::Tensor::getSize</a></div><div class="ttdeci">__host__ __device__ IndexT getSize(int i) const </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00224">Tensor.cuh:224</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_a96240a08b42bd1913e2286d7d514fc56"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#a96240a08b42bd1913e2286d7d514fc56">faiss::gpu::IVFBase::deviceListDataPointers_</a></div><div class="ttdeci">thrust::device_vector&lt; void * &gt; deviceListDataPointers_</div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00104">IVFBase.cuh:104</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html_a50411ce4d0fa32ef715e3321b6e33212"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html#a50411ce4d0fa32ef715e3321b6e33212">faiss::gpu::Tensor::data</a></div><div class="ttdeci">__host__ __device__ DataPtrType data()</div><div class="ttdoc">Returns a raw pointer to the start of our data. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00176">Tensor.cuh:176</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_a05e6400358ec1f529a67209d3f24cc63"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#a05e6400358ec1f529a67209d3f24cc63">faiss::gpu::IVFBase::resources_</a></div><div class="ttdeci">GpuResources * resources_</div><div class="ttdoc">Collection of GPU resources that we use. </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00082">IVFBase.cuh:82</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1Tensor_html"><div class="ttname"><a href="classfaiss_1_1gpu_1_1Tensor.html">faiss::gpu::Tensor</a></div><div class="ttdoc">Our tensor type. </div><div class="ttdef"><b>Definition:</b> <a href="Tensor_8cuh_source.html#l00030">Tensor.cuh:30</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_a319568b832518392fed33ea4f8bfc613"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#a319568b832518392fed33ea4f8bfc613">faiss::gpu::IVFBase::bytesPerVector_</a></div><div class="ttdeci">const int bytesPerVector_</div><div class="ttdoc">Number of bytes per vector in the list. </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00094">IVFBase.cuh:94</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_acc695610c9513952b8d234dc0db78e5c"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#acc695610c9513952b8d234dc0db78e5c">faiss::gpu::IVFBase::updateDeviceListInfo_</a></div><div class="ttdeci">void updateDeviceListInfo_(cudaStream_t stream)</div><div class="ttdoc">Update all device-side list pointer and size information. </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cu_source.html#l00138">IVFBase.cu:138</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1FlatIndex_html_a12058744ffb3fbcbb047872449269c06"><div class="ttname"><a href="classfaiss_1_1gpu_1_1FlatIndex.html#a12058744ffb3fbcbb047872449269c06">faiss::gpu::FlatIndex::getVectorsFloat32Ref</a></div><div class="ttdeci">Tensor&lt; float, 2, true &gt; &amp; getVectorsFloat32Ref()</div><div class="ttdoc">Returns a reference to our vectors currently in use. </div><div class="ttdef"><b>Definition:</b> <a href="FlatIndex_8cu_source.html#l00079">FlatIndex.cu:79</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_afb6d10e23d6448c10f472b9234e0bcab"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#afb6d10e23d6448c10f472b9234e0bcab">faiss::gpu::IVFBase::indicesOptions_</a></div><div class="ttdeci">const IndicesOptions indicesOptions_</div><div class="ttdoc">How are user indices stored on the GPU? </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00097">IVFBase.cuh:97</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1HostTensor_html"><div class="ttname"><a href="classfaiss_1_1gpu_1_1HostTensor.html">faiss::gpu::HostTensor</a></div><div class="ttdef"><b>Definition:</b> <a href="HostTensor_8cuh_source.html#l00022">HostTensor.cuh:22</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_a2facc7285107de1f24d3471cbcf15f26"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#a2facc7285107de1f24d3471cbcf15f26">faiss::gpu::IVFBase::deviceListData_</a></div><div class="ttdeci">std::vector&lt; std::unique_ptr&lt; DeviceVector&lt; unsigned char &gt; &gt; &gt; deviceListData_</div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00121">IVFBase.cuh:121</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1DeviceTensor_html"><div class="ttname"><a href="classfaiss_1_1gpu_1_1DeviceTensor.html">faiss::gpu::DeviceTensor&lt; float, 3, true &gt;</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFPQ_html_a18cfe8bf2178468f3372727d0b0bbc33"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFPQ.html#a18cfe8bf2178468f3372727d0b0bbc33">faiss::gpu::IVFPQ::IVFPQ</a></div><div class="ttdeci">IVFPQ(GpuResources *resources, FlatIndex *quantizer, int numSubQuantizers, int bitsPerSubQuantizer, float *pqCentroidData, IndicesOptions indicesOptions, bool useFloat16LookupTables, MemorySpace space)</div><div class="ttdef"><b>Definition:</b> <a href="IVFPQ_8cu_source.html#l00035">IVFPQ.cu:35</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_aba3e3cfa469e5187f2d553fff10e0250"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#aba3e3cfa469e5187f2d553fff10e0250">faiss::gpu::IVFBase::dim_</a></div><div class="ttdeci">const int dim_</div><div class="ttdoc">Expected dimensionality of the vectors. </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cuh_source.html#l00088">IVFBase.cuh:88</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFBase_html_a5027720549de98f4e609d6339099df35"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFBase.html#a5027720549de98f4e609d6339099df35">faiss::gpu::IVFBase::addIndicesFromCpu_</a></div><div class="ttdeci">void addIndicesFromCpu_(int listId, const long *indices, size_t numVecs)</div><div class="ttdoc">Shared function to copy indices from CPU to GPU. </div><div class="ttdef"><b>Definition:</b> <a href="IVFBase_8cu_source.html#l00245">IVFBase.cu:245</a></div></div>
<div class="ttc" id="classfaiss_1_1gpu_1_1IVFPQ_html_a0eedf0295ad73125ee1254173a176674"><div class="ttname"><a href="classfaiss_1_1gpu_1_1IVFPQ.html#a0eedf0295ad73125ee1254173a176674">faiss::gpu::IVFPQ::isSupportedNoPrecomputedSubDimSize</a></div><div class="ttdeci">static bool isSupportedNoPrecomputedSubDimSize(int dims)</div><div class="ttdef"><b>Definition:</b> <a href="IVFPQ_8cu_source.html#l00097">IVFPQ.cu:97</a></div></div>
</div><!-- fragment --></div><!-- contents -->
<!-- start footer part -->
<hr class="footer"/><address class="footer"><small>
Generated by &#160;<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/>
</a> 1.8.5
</small></address>
</body>
</html>