Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
P
physical
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
physical
Commits
374fb99d
Commit
374fb99d
authored
May 16, 2019
by
段英荣
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'branch_0520' into 'test'
Branch 0520 See merge request
alpha/physical!334
parents
c1b48f9f
92ec6cc3
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
66 additions
and
104 deletions
+66
-104
tasks.py
injection/data_sync/tasks.py
+11
-2
collect_data.py
linucb/views/collect_data.py
+22
-31
topic.py
search/utils/topic.py
+13
-38
topic.py
search/views/topic.py
+20
-17
topic.py
trans2es/models/topic.py
+0
-16
No files found.
injection/data_sync/tasks.py
View file @
374fb99d
...
...
@@ -60,12 +60,21 @@ def sync_face_similar_data_to_redis():
item_list
=
list
()
for
item
in
similar_result_items
:
weight_score
=
int
(
item
.
similarity
*
100
)
item_list
.
append
(
{
"contrast_user_id"
:
item
.
contrast_user_id
,
"similarity"
:
item
.
similarity
"filter"
:{
"constant_score"
:{
"filter"
:{
"term"
:{
"user_id"
:
item
.
contrast_user_id
}
}
}
},
"weight"
:
weight_score
*
2
}
)
if
len
(
item_list
)
>=
100
:
break
redis_client
.
set
(
redis_key
,
json
.
dumps
(
item_list
))
logging
.
info
(
"participant_user_id:
%
d set data done!"
%
participant_user_id
)
...
...
linucb/views/collect_data.py
View file @
374fb99d
...
...
@@ -68,7 +68,6 @@ class CollectData(object):
if
len
(
recommend_tag_list
)
>
0
:
tag_recommend_redis_key
=
self
.
linucb_recommend_redis_prefix
+
str
(
device_id
)
redis_client
.
set
(
tag_recommend_redis_key
,
json
.
dumps
(
recommend_tag_list
))
# Todo:设置过期时间,调研set是否支持
redis_client
.
expire
(
tag_recommend_redis_key
,
7
*
24
*
60
*
60
)
have_read_topic_id_list
=
Tools
.
get_have_read_topic_id_list
(
device_id
,
user_id
,
TopicPageType
.
HOME_RECOMMEND
)
...
...
@@ -80,38 +79,35 @@ class CollectData(object):
recommend_topic_id_list_click
=
list
()
recommend_topic_id_list_click_dict
=
dict
()
if
click_topic_tag_list
:
if
len
(
click_topic_tag_list
)
>
0
:
recommend_topic_id_list_click
,
recommend_topic_id_list_click_dict
=
ESPerform
.
get_tag_topic_list_dict
(
click_topic_tag_list
,
if
click_topic_tag_list
and
len
(
click_topic_tag_list
)
>
0
:
recommend_topic_id_list_click
,
recommend_topic_id_list_click_dict
=
ESPerform
.
get_tag_topic_list_dict
(
click_topic_tag_list
,
have_read_topic_id_list
,
size
=
2
)
if
len
(
recommend_topic_id_list_click
)
>
0
:
recommend_topic_id_list
.
extend
(
recommend_topic_id_list_click
)
recommend_topic_id_list_dict
.
update
(
recommend_topic_id_list_click_dict
)
have_read_topic_id_list
.
extend
(
recommend_topic_id_list_click
)
click_recommend_redis_key
=
self
.
click_recommend_redis_key_prefix
+
str
(
device_id
)
click_redis_data_dict
=
{
"data"
:
json
.
dumps
(
recommend_topic_id_list
),
"datadict"
:
json
.
dumps
(
recommend_topic_id_list_dict
),
"cursor"
:
0
}
redis_client
.
hmset
(
click_recommend_redis_key
,
click_redis_data_dict
)
#
have_read_topic_id_list.extend(recommend_topic_id_list_click)
#
click_recommend_redis_key = self.click_recommend_redis_key_prefix + str(device_id)
#
click_redis_data_dict = {
#
"data": json.dumps(recommend_topic_id_list),
#
"datadict":json.dumps(recommend_topic_id_list_dict),
#
"cursor": 0
#
}
#
redis_client.hmset(click_recommend_redis_key, click_redis_data_dict)
tag_id_list
=
recommend_tag_list
[
0
:
100
]
topic_recommend_redis_key
=
self
.
linucb_recommend_topic_id_prefix
+
str
(
device_id
)
redis_topic_data_dict
=
redis_client
.
hgetall
(
topic_recommend_redis_key
)
redis_topic_list
=
list
()
cursor
=
-
1
if
b
"data"
in
redis_topic_data_dict
:
redis_topic_list
=
json
.
loads
(
redis_topic_data_dict
[
b
"data"
])
if
redis_topic_data_dict
[
b
"data"
]
else
[]
cursor
=
int
(
str
(
redis_topic_data_dict
[
b
"cursor"
],
encoding
=
"utf-8"
))
if
len
(
recommend_topic_id_list
)
==
0
and
cursor
==
0
and
len
(
redis_topic_list
)
>
0
:
have_read_topic_id_list
.
extend
(
redis_topic_list
[:
2
])
tag_topic_dict
=
dict
()
# redis_topic_data_dict = redis_client.hgetall(topic_recommend_redis_key)
# redis_topic_list = list()
# cursor = -1
# if b"data" in redis_topic_data_dict:
# redis_topic_list = json.loads(redis_topic_data_dict[b"data"]) if redis_topic_data_dict[
# b"data"] else []
# cursor = int(str(redis_topic_data_dict[b"cursor"], encoding="utf-8"))
# if len(recommend_topic_id_list)==0 and cursor==0 and len(redis_topic_list)>0:
# have_read_topic_id_list.extend(redis_topic_list[:2])
if
len
(
new_user_click_tag_list
)
>
0
:
tag_topic_id_list
,
tag_topic_dict
=
ESPerform
.
get_tag_topic_list_dict
(
new_user_click_tag_list
,
have_read_topic_id_list
)
...
...
@@ -119,7 +115,7 @@ class CollectData(object):
tag_topic_id_list
,
tag_topic_dict
=
ESPerform
.
get_tag_topic_list_dict
(
tag_id_list
,
have_read_topic_id_list
)
if
len
(
recommend_topic_id_list
)
>
0
or
len
(
new_user_click_tag_list
)
>
0
:
if
len
(
recommend_topic_id_list
)
>
0
or
len
(
tag_topic_id_list
)
>
0
or
len
(
new_user_click_tag_list
)
>
0
:
tag_topic_id_list
=
recommend_topic_id_list
+
tag_topic_id_list
tag_topic_dict
.
update
(
recommend_topic_id_list_dict
)
redis_data_dict
=
{
...
...
@@ -128,11 +124,6 @@ class CollectData(object):
"cursor"
:
0
}
redis_client
.
hmset
(
topic_recommend_redis_key
,
redis_data_dict
)
else
:
if
cursor
<=
0
and
len
(
redis_topic_list
)
>
0
:
tag_topic_dict
=
list
()
tag_topic_dict
=
redis_topic_list
[:
2
]
tag_topic_dict
=
list
(
set
(
tag_topic_dict
))
return
True
except
:
...
...
search/utils/topic.py
View file @
374fb99d
...
...
@@ -11,6 +11,8 @@ from libs.es import ESPerform
from
.common
import
TopicDocumentField
from
search.utils.common
import
*
from
trans2es.models.pictorial
import
PictorialTopics
from
libs.cache
import
redis_client
class
TopicUtils
(
object
):
...
...
@@ -161,14 +163,6 @@ class TopicUtils(object):
q
[
"query"
]
=
dict
()
functions_list
=
[
# {
# "filter": {
# "term": {
# "language_type": 1
# }
# },
# "weight": 60
# },
{
"gauss"
:
{
"create_time"
:
{
...
...
@@ -177,38 +171,22 @@ class TopicUtils(object):
}
},
"weight"
:
60
},
# {
# "filter": {
# "constant_score":{
# "filter":{
# "term": {
# "content_level": 6
# }
# }
# }
# },
# "weight": 600
# }
}
]
# if len(user_similar_score_list) > 0:
# for item in user_similar_score_list[:100]:
# score_item = 2 + item[1]
# functions_list.append(
# {
# "filter": {"bool": {
# "should": {"term": {"user_id": item[0]}}}},
# "weight": score_item,
# }
# )
if
user_id
and
user_id
>
0
:
redis_key_prefix
=
"physical:user_similar:participant_user_id:"
similar_redis_key
=
redis_key_prefix
+
str
(
user_id
)
redis_user_similar_data
=
redis_client
.
get
(
similar_redis_key
)
user_similar_list
=
json
.
loads
(
redis_user_similar_data
)
if
redis_user_similar_data
else
[]
if
len
(
user_similar_list
)
>
0
:
functions_list
.
extend
(
user_similar_list
)
if
len
(
attention_user_id_list
)
>
0
:
functions_list
.
append
(
{
"filter"
:
{
"bool"
:
{
"should"
:
{
"terms"
:
{
"user_id"
:
attention_user_id_list
}}}},
"weight"
:
30
,
"filter"
:
{
"constant_score"
:{
"filter"
:{
"terms"
:
{
"user_id"
:
attention_user_id_list
}}}},
"weight"
:
100
,
}
)
if
len
(
attention_tag_list
)
>
0
:
...
...
@@ -224,8 +202,6 @@ class TopicUtils(object):
"query"
:
{
"bool"
:
{
"filter"
:
[
# {"term": {"content_level": 6}},
# {"term": {"has_image":True}},
{
"term"
:
{
"is_online"
:
True
}},
{
"term"
:
{
"is_deleted"
:
False
}}
],
...
...
@@ -297,7 +273,7 @@ class TopicUtils(object):
]
query_function_score
[
"query"
][
"bool"
][
"minimum_should_match"
]
=
1
query_function_score
[
"query"
][
"bool"
][
"filter"
]
.
append
(
{
"range"
:
{
"content_level"
:
{
"gte"
:
4
,
"lte"
:
6
}}}
{
"range"
:
{
"content_level"
:
{
"gte"
:
3
,
"lte"
:
6
}}}
)
else
:
if
"must_not"
in
query_function_score
[
"query"
][
"bool"
]:
...
...
@@ -321,7 +297,6 @@ class TopicUtils(object):
q
[
"collapse"
]
=
{
"field"
:
"user_id"
}
# "includes": ["id", "pictorial_id", "offline_score", "user_id", "edit_tag_list"]
q
[
"_source"
]
=
{
"includes"
:
[
"id"
]
}
...
...
search/views/topic.py
View file @
374fb99d
...
...
@@ -49,13 +49,15 @@ def get_home_recommend_topic_ids(user_id, device_id, tag_id, offset, size, query
query_type
=
TopicPageType
.
HOME_RECOMMEND
,
promote_topic_list
=
[],
disable_collpase
=
False
):
try
:
topic_star_routing
=
"6"
index_type
=
"topic-high-star"
if
query
is
None
:
if
user_id
>
0
:
redis_key
=
"physical:home_recommend"
+
":user_id:"
+
str
(
user_id
)
+
":query_type:"
+
str
(
query_type
)
else
:
redis_key
=
"physical:home_recommend"
+
":device_id:"
+
device_id
+
":query_type:"
+
str
(
query_type
)
else
:
topic_star_routing
=
"4,5,6"
topic_star_routing
=
"3,4,5,6"
index_type
=
"topic"
if
user_id
>
0
:
redis_key
=
"physical:home_query"
+
":user_id:"
+
str
(
user_id
)
+
":query:"
+
str
(
query
)
+
":query_type:"
+
str
(
query_type
)
else
:
...
...
@@ -89,22 +91,22 @@ def get_home_recommend_topic_ids(user_id, device_id, tag_id, offset, size, query
recommend_topic_dict
=
redis_client
.
hgetall
(
topic_recommend_redis_key
)
if
b
"data"
in
recommend_topic_dict
:
recommend_topic_id_list
=
json
.
loads
(
recommend_topic_dict
[
b
"data"
])
linucb_recommend_topic_id_list
=
json
.
loads
(
recommend_topic_dict
[
b
"data"
])
# 推荐帖子是强插的,要保证推荐帖子不在已读里
# recommend_topic_id_list = list(set(recommend_topic_id_list) - set(have_read_topic_id_list))
cursor
=
int
(
str
(
recommend_topic_dict
[
b
"cursor"
],
encoding
=
"utf-8"
))
newcursor
=
cursor
+
6
if
len
(
recommend_topic_id_list
)
>
newcursor
:
recommend_topic_list
=
recommend_topic_id_list
[
cursor
:
newcursor
]
redis_client
.
hset
(
topic_recommend_redis_key
,
"cursor"
,
newcursor
)
recommend_topic_id_list
=
list
(
set
(
linucb_recommend_topic_id_list
)
-
set
(
have_read_topic_id_list
))
recommend_topic_id_list
.
sort
(
key
=
linucb_recommend_topic_id_list
.
index
)
# cursor = int(str(recommend_topic_dict[b"cursor"], encoding="utf-8"))
# newcursor = cursor + 6
if
len
(
recommend_topic_id_list
)
>
0
:
recommend_topic_list
=
recommend_topic_id_list
[
0
:
size
]
# redis_client.hset(topic_recommend_redis_key, "cursor", newcursor)
if
b
"datadict"
in
recommend_topic_dict
:
recommend_topic_id_dict
=
json
.
loads
(
recommend_topic_dict
[
b
"datadict"
])
if
len
(
recommend_topic_list
)
==
6
and
recommend_topic_id_dict
is
not
None
:
linucb_
recommend_topic_id_dict
=
json
.
loads
(
recommend_topic_dict
[
b
"datadict"
])
if
len
(
recommend_topic_list
)
==
6
and
linucb_
recommend_topic_id_dict
is
not
None
:
for
i
in
recommend_topic_list
:
recommend_topic_user_list
.
append
(
recommend_topic_id_dict
[
str
(
i
)])
recommend_topic_user_list
.
append
(
linucb_
recommend_topic_id_dict
[
str
(
i
)])
# 用户关注标签
redis_tag_data
=
redis_client
.
hget
(
"physical:linucb:register_user_tag_info"
,
user_id
)
attention_tag_list
=
json
.
loads
(
redis_tag_data
)
if
redis_tag_data
else
[]
...
...
@@ -120,11 +122,12 @@ def get_home_recommend_topic_ids(user_id, device_id, tag_id, offset, size, query
# for topic_id in promote_recommend_topic_id_list:
# have_read_topic_id_list_add_promote.append(topic_id)
have_read_topic_id_list
.
extend
(
promote_topic_list
)
topic_id_list
=
list
()
rank_topic_id_list
=
TopicUtils
.
get_recommend_topic_ids
(
user_id
=
user_id
,
tag_id
=
tag_id
,
offset
=
0
,
size
=
size
,
single_size
=
size
,
query
=
query
,
query_type
=
query_type
,
filter_topic_id_list
=
have_read_topic_id_list
,
index_type
=
"topic-high-star"
,
routing
=
topic_star_routing
,
attention_tag_list
=
attention_tag_list
,
linucb_user_id_list
=
recommend_topic_user_list
,
disable_collpase
=
disable_collpase
)
rank_topic_id_list
=
list
()
if
size
>
0
:
rank_topic_id_list
=
TopicUtils
.
get_recommend_topic_ids
(
user_id
=
user_id
,
tag_id
=
tag_id
,
offset
=
0
,
size
=
size
,
single_size
=
size
,
query
=
query
,
query_type
=
query_type
,
filter_topic_id_list
=
have_read_topic_id_list
,
index_type
=
index_type
,
routing
=
topic_star_routing
,
attention_tag_list
=
attention_tag_list
,
linucb_user_id_list
=
recommend_topic_user_list
,
disable_collpase
=
disable_collpase
)
# if len(recommend_topic_list) == 6 and query is None:
# if (size < 11):
...
...
trans2es/models/topic.py
View file @
374fb99d
...
...
@@ -227,10 +227,6 @@ class Topic(models.Model):
elif
user_query_results
[
0
]
.
is_shadow
:
user_is_shadow
=
True
# 是否官方推荐小组
# if self.group and self.group.is_recommend:
# offline_score += 4.0
# 帖子等级
if
self
.
content_level
==
'5'
:
offline_score
+=
100.0
*
3
...
...
@@ -239,20 +235,8 @@ class Topic(models.Model):
elif
self
.
content_level
==
'6'
:
offline_score
+=
200.0
*
3
# is_excellent = self.judge_if_excellent_topic(self.id)
# if is_excellent:
# offline_score += 200.0
if
self
.
language_type
==
1
:
offline_score
+=
60.0
# exposure_count = ActionSumAboutTopic.objects.using(settings.SLAVE_DB_NAME).filter(topic_id=self.id, data_type=1).count()
# click_count = ActionSumAboutTopic.objects.using(settings.SLAVE_DB_NAME).filter(topic_id=self.id, data_type=2).count()
# uv_num = ActionSumAboutTopic.objects.using(settings.SLAVE_DB_NAME).filter(topic_id=self.id, data_type=3).count()
#
# if exposure_count > 0:
# offline_score += click_count / exposure_count
# if uv_num > 0:
# offline_score += (self.vote_num / uv_num + self.reply_num / uv_num)
"""
1:马甲账号是否对总分降权?
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment