Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
P
physical
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
physical
Commits
ac6c6ee7
Commit
ac6c6ee7
authored
Apr 18, 2019
by
Kai
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' into hk
parents
5c539fd7
24529ca5
Hide whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
142 additions
and
130 deletions
+142
-130
tasks.py
injection/data_sync/tasks.py
+2
-0
es.py
libs/es.py
+17
-3
register_user_tag.py
linucb/utils/register_user_tag.py
+37
-2
collect_data.py
linucb/views/collect_data.py
+14
-22
topic.py
search/utils/topic.py
+13
-55
topic.py
search/views/topic.py
+38
-37
topic-high-star.json
trans2es/mapping/topic-high-star.json
+2
-1
topic-star-routing.json
trans2es/mapping/topic-star-routing.json
+2
-1
topic-v1.json
trans2es/mapping/topic-v1.json
+5
-3
topic.json
trans2es/mapping/topic.json
+2
-1
topic.py
trans2es/models/topic.py
+4
-4
topic_transfer.py
trans2es/utils/topic_transfer.py
+6
-1
No files found.
injection/data_sync/tasks.py
View file @
ac6c6ee7
...
...
@@ -20,6 +20,8 @@ def write_to_es(es_type, pk_list, use_batch_query_set=False):
if
es_type
==
"register_user_tag"
:
RegisterUserTag
.
get_register_user_tag
(
pk_list
)
elif
es_type
==
"attention_user_tag"
:
RegisterUserTag
.
get_user_attention_tag
(
pk_list
)
else
:
type_info_map
=
get_type_info_map
()
type_info
=
type_info_map
[
es_type
]
...
...
libs/es.py
View file @
ac6c6ee7
...
...
@@ -264,7 +264,7 @@ class ESPerform(object):
return
True
@classmethod
def
get_tag_topic_list
(
cls
,
tag_id
,
have_read_topic_id_list
):
def
get_tag_topic_list
(
cls
,
tag_id
,
have_read_topic_id_list
,
size
=
100
):
try
:
functions_list
=
list
()
for
id
in
tag_id
:
...
...
@@ -274,13 +274,27 @@ class ESPerform(object):
"weight"
:
1
}
)
functions_list
+=
[
{
"filter"
:
{
"term"
:
{
"content_level"
:
6
}},
"weight"
:
6000
},
{
"filter"
:
{
"term"
:
{
"content_level"
:
5
}},
"weight"
:
5000
},
{
"filter"
:
{
"term"
:
{
"content_level"
:
4
}},
"weight"
:
4000
}
]
q
=
{
"query"
:{
"function_score"
:{
"query"
:
{
"bool"
:
{
"must"
:
[
{
"range"
:
{
"content_level"
:
{
"gte"
:
3
,
"lte"
:
5
}}},
{
"range"
:
{
"content_level"
:
{
"gte"
:
4
,
"lte"
:
6
}}},
{
"term"
:
{
"is_online"
:
True
}},
{
"term"
:
{
"is_deleted"
:
False
}},
{
"terms"
:
{
"tag_list"
:
tag_id
}}
...
...
@@ -308,7 +322,7 @@ class ESPerform(object):
}
}
result_dict
=
ESPerform
.
get_search_results
(
ESPerform
.
get_cli
(),
sub_index_name
=
"topic"
,
query_body
=
q
,
offset
=
0
,
size
=
100
,
routing
=
"3,4,5
"
)
offset
=
0
,
size
=
size
,
routing
=
"4,5,6
"
)
topic_id_list
=
[
item
[
"_source"
][
"id"
]
for
item
in
result_dict
[
"hits"
]]
logging
.
info
(
"topic_id_list:
%
s"
%
str
(
topic_id_list
))
...
...
linucb/utils/register_user_tag.py
View file @
ac6c6ee7
...
...
@@ -9,7 +9,7 @@ import traceback
import
json
import
pickle
from
django.conf
import
settings
from
trans2es.models.tag
import
AccountUserTag
from
trans2es.models.tag
import
AccountUserTag
,
CommunityTagFollow
from
libs.es
import
ESPerform
import
libs.tools
as
Tools
from
search.utils.common
import
*
...
...
@@ -30,8 +30,40 @@ class RegisterUserTag(object):
linucb_user_id_register_tag_topic_id_prefix
=
"physical:linucb:register_tag_topic_recommend:user_id:"
linucb_register_user_tag_key
=
"physical:linucb:register_user_tag_info"
@classmethod
def
get_user_attention_tag
(
cls
,
pk_list
):
"""
:remark 获取用户关注标签
:param pk_list:
:return:
"""
try
:
user_id_dict
=
dict
()
query_results
=
CommunityTagFollow
.
objects
.
filter
(
pk__in
=
pk_list
,
is_deleted
=
False
,
is_online
=
True
)
for
item
in
query_results
:
tag_id
=
item
.
tag_id
user_id
=
item
.
user_id
user_tag_list
=
CommunityTagFollow
.
objects
.
filter
(
user
=
user_id
,
is_deleted
=
False
,
is_online
=
True
)
.
values_list
(
"tag_id"
,
flat
=
True
)
user_id_dict
[
user_id
]
=
user_tag_list
for
user_id
in
user_id_dict
:
redis_user_tag_id_data
=
redis_client
.
hget
(
cls
.
linucb_register_user_tag_key
,
user_id
)
redis_user_tag_id_list
=
json
.
loads
(
redis_user_tag_id_data
)
if
redis_user_tag_id_data
else
[]
redis_user_tag_id_list
.
extend
(
user_id_dict
[
user_id
])
redis_client
.
hset
(
cls
.
linucb_register_user_tag_key
,
user_id
,
json
.
dumps
(
list
(
set
(
redis_user_tag_id_list
))))
except
:
logging
.
error
(
"catch exception,err_msg:
%
s"
%
traceback
.
format_exc
())
@classmethod
def
get_register_user_tag
(
cls
,
pk_list
):
"""
:remark 用户注册时选的标签
:param pk_list:
:return:
"""
try
:
# user_id_set = set()
user_id_dict
=
dict
()
...
...
@@ -43,7 +75,10 @@ class RegisterUserTag(object):
user_id_dict
[
user_id
]
=
user_tag_list
for
user_id
in
user_id_dict
:
redis_client
.
hset
(
cls
.
linucb_register_user_tag_key
,
user_id
,
json
.
dumps
(
list
(
user_id_dict
[
user_id
])))
redis_user_tag_id_data
=
redis_client
.
hget
(
cls
.
linucb_register_user_tag_key
,
user_id
)
redis_user_tag_id_list
=
json
.
loads
(
redis_user_tag_id_data
)
if
redis_user_tag_id_data
else
[]
redis_user_tag_id_list
.
extend
(
user_id_dict
[
user_id
])
redis_client
.
hset
(
cls
.
linucb_register_user_tag_key
,
user_id
,
json
.
dumps
(
list
(
set
(
redis_user_tag_id_list
))))
# if user_id not in user_id_set:
# user_id_set.add(user_id)
...
...
linucb/views/collect_data.py
View file @
ac6c6ee7
...
...
@@ -54,9 +54,6 @@ class CollectData(object):
def
update_recommend_tag_list
(
self
,
device_id
,
user_feature
=
None
,
user_id
=
None
,
click_topic_tag_list
=
None
):
try
:
recommend_tag_set
=
set
()
recommend_tag_list
=
list
()
recommend_tag_dict
=
dict
()
redis_linucb_tag_data_dict
=
self
.
_get_user_linucb_info
(
device_id
)
if
len
(
redis_linucb_tag_data_dict
)
==
0
:
recommend_tag_list
=
LinUCB
.
get_default_tag_list
(
user_id
)
...
...
@@ -82,22 +79,17 @@ class CollectData(object):
if
click_topic_tag_list
:
if
len
(
click_topic_tag_list
)
>
0
:
recommend_topic_id_list_click
=
ESPerform
.
get_tag_topic_list
(
click_topic_tag_list
,
have_read_topic_id_list
)
have_read_topic_id_list
,
size
=
2
)
if
len
(
recommend_topic_id_list_click
)
>
0
:
num
=
min
(
len
(
recommend_topic_id_list_click
),
2
)
logging
.
info
(
"recommend_topic_id_list:
%
s"
%
(
str
(
num
)))
for
i
in
range
(
0
,
num
):
recommend_topic_id_list
.
append
(
recommend_topic_id_list_click
[
i
])
have_read_topic_id_list
.
extend
(
recommend_topic_id_list
)
click_recommend_redis_key
=
self
.
click_recommend_redis_key_prefix
+
str
(
device_id
)
click_redis_data_dict
=
{
"data"
:
json
.
dumps
(
recommend_topic_id_list
),
"cursor"
:
0
}
redis_client
.
hmset
(
click_recommend_redis_key
,
click_redis_data_dict
)
total_topic_list
=
list
()
tag_topic_id_list
=
list
()
recommend_topic_id_list
.
extend
(
recommend_topic_id_list_click
)
have_read_topic_id_list
.
extend
(
recommend_topic_id_list
)
click_recommend_redis_key
=
self
.
click_recommend_redis_key_prefix
+
str
(
device_id
)
click_redis_data_dict
=
{
"data"
:
json
.
dumps
(
recommend_topic_id_list
),
"cursor"
:
0
}
redis_client
.
hmset
(
click_recommend_redis_key
,
click_redis_data_dict
)
tag_id_list
=
recommend_tag_list
[
0
:
100
]
topic_recommend_redis_key
=
self
.
linucb_recommend_topic_id_prefix
+
str
(
device_id
)
...
...
@@ -164,8 +156,8 @@ class CollectData(object):
tag_list
=
list
()
click_topic_tag_list
=
list
()
collection_tag_sql_query_results
=
TopicTag
.
objects
.
using
(
settings
.
SLAVE_DB_NAME
)
.
filter
(
topic_id
=
topic_id
)
.
values_list
(
"tag_id"
,
"is_online"
,
"is_collection"
)
if
len
(
collection_tag_sql_query_results
)
>
0
:
for
tag_id
,
is_online
,
is_collection
in
collection_tag_sql_query_results
:
#
if len(collection_tag_sql_query_results)>0:
for
tag_id
,
is_online
,
is_collection
in
collection_tag_sql_query_results
:
if
is_online
and
is_collection
==
1
:
click_topic_tag_list
.
append
(
tag_id
)
...
...
@@ -217,8 +209,8 @@ class CollectData(object):
topic_tag_id_dict
=
dict
()
tag_list
=
list
()
exposure_sql_query_results
=
TopicTag
.
objects
.
using
(
settings
.
SLAVE_DB_NAME
)
.
filter
(
topic_id__in
=
exposure_topic_id_list
)
.
values_list
(
"topic_id"
,
"tag_id"
,
"is_online"
,
"is_collection"
)
if
len
(
exposure_sql_query_results
)
>
0
:
for
topic_id
,
tag_id
,
is_online
,
is_collection
in
exposure_sql_query_results
:
#
if len(exposure_sql_query_results)>0:
for
topic_id
,
tag_id
,
is_online
,
is_collection
in
exposure_sql_query_results
:
if
is_online
and
is_collection
==
1
:
tag_list
.
append
(
tag_id
)
if
is_online
:
...
...
search/utils/topic.py
View file @
ac6c6ee7
...
...
@@ -196,25 +196,6 @@ class TopicUtils(object):
"weight"
:
30
,
}
)
# if len(pick_user_id_list) > 0:
# functions_list.append(
# {
# "filter": {"bool": {
# "should": {"terms": {"user_id": pick_user_id_list}}}},
# "weight": 2
# }
# )
# if len(same_pictorial_id_list) > 0:
# functions_list.append(
# {
# "filter": {"bool": {
# "should": {"terms": {"user_id": same_pictorial_id_list}}}},
# "weight": 1
# }
# )
# query_tag_term_list = cls.___get_should_term_list(user_tag_list)
if
len
(
attention_tag_list
)
>
0
:
functions_list
.
append
(
{
...
...
@@ -223,40 +204,11 @@ class TopicUtils(object):
"weight"
:
100
}
)
# if len(recommend_tag_list)>0:
# if len(recommend_tag_list)>1:
# functions_list += [
# {
# "filter": {"term": {"tag_list": recommend_tag_list[0]}},
# "weight": 4
# },
# {
# "filter": {"terms": {"tag_list": recommend_tag_list[1:]}},
# "weight": 3
# }
# ]
# else:
# functions_list.append(
# {
# "filter": {"terms": {"tag_list": recommend_tag_list}},
# "weight": 3
# }
# )
# for tag_id in recommend_tag_dict:
# functions_list.append(
# {
# "filter": {"term": {"tag_list": tag_id}},
# "weight": recommend_tag_dict[tag_id]
# }
# )
# low_content_level = 4 if query_type == TopicPageType.FIND_PAGE else 3
query_function_score
=
{
"query"
:
{
"bool"
:
{
"filter"
:
[
{
"range"
:
{
"content_level"
:
{
"gte"
:
4
,
"lte"
:
5
}}},
{
"range"
:
{
"content_level"
:
{
"gte"
:
4
,
"lte"
:
6
}}},
# {"term": {"has_image":True}},
{
"term"
:
{
"is_online"
:
True
}},
{
"term"
:
{
"is_deleted"
:
False
}}
...
...
@@ -291,11 +243,9 @@ class TopicUtils(object):
}
}
if
len
(
filter_topic_id_list
)
>
0
:
query_function_score
[
"query"
][
"bool"
][
"must_not"
]
=
{
"terms"
:
{
"id"
:
filter_topic_id_list
}
}
query_function_score
[
"query"
][
"bool"
][
"must_not"
]
=
[
{
"terms"
:{
"id"
:
filter_topic_id_list
}}
]
if
query
is
not
None
:
# 搜索帖子
multi_fields
=
{
...
...
@@ -317,7 +267,15 @@ class TopicUtils(object):
{
"term"
:
{
"tag_list"
:
tag_id
}}
]
query_function_score
[
"query"
][
"bool"
][
"minimum_should_match"
]
=
1
else
:
if
"must_not"
in
query_function_score
[
"query"
][
"bool"
]:
query_function_score
[
"query"
][
"bool"
][
"must_not"
]
+=
[
{
"term"
:
{
"is_operation_home_recommend"
:
True
}}
]
else
:
query_function_score
[
"query"
][
"bool"
][
"must_not"
]
=
[
{
"term"
:
{
"is_operation_home_recommend"
:
True
}}
]
q
[
"query"
][
"function_score"
]
=
query_function_score
q
[
"collapse"
]
=
{
"field"
:
"user_id"
...
...
search/views/topic.py
View file @
ac6c6ee7
...
...
@@ -30,7 +30,7 @@ def get_discover_page_topic_ids(user_id, device_id, size, query_type=TopicPageTy
recommend_topic_ids
=
TopicUtils
.
get_recommend_topic_ids
(
user_id
=
user_id
,
tag_id
=
0
,
offset
=
0
,
size
=
size
,
single_size
=
size
,
query_type
=
query_type
,
filter_topic_id_list
=
have_read_topic_id_list
,
index_type
=
"topic"
,
routing
=
"4,5"
)
filter_topic_id_list
=
have_read_topic_id_list
,
index_type
=
"topic"
,
routing
=
"4,5
,6
"
)
have_read_topic_id_list
.
extend
(
recommend_topic_ids
)
...
...
@@ -63,25 +63,14 @@ def get_home_recommend_topic_ids(user_id, device_id, tag_id, offset, size, query
redis_field_list
=
[
b
'have_read_topic_list'
]
redis_field_val_list
=
redis_client
.
hmget
(
redis_key
,
redis_field_list
)
topic_recommend_redis_key
=
"physical:linucb:topic_recommend:device_id:"
+
str
(
device_id
)
recommend_topic_list
=
list
()
recommend_topic_dict
=
redis_client
.
hgetall
(
topic_recommend_redis_key
)
if
b
"data"
in
recommend_topic_dict
:
recommend_topic_id_list
=
json
.
loads
(
recommend_topic_dict
[
b
"data"
])
cursor
=
int
(
str
(
recommend_topic_dict
[
b
"cursor"
],
encoding
=
"utf-8"
))
newcursor
=
cursor
+
6
if
len
(
recommend_topic_id_list
)
>
newcursor
:
recommend_topic_list
=
recommend_topic_id_list
[
cursor
:
newcursor
]
redis_client
.
hset
(
topic_recommend_redis_key
,
"cursor"
,
newcursor
)
# 获取已读帖子
have_read_topic_id_list
=
list
()
if
redis_field_val_list
[
0
]:
if
query
is
None
:
have_read_topic_id_list
=
list
(
json
.
loads
(
redis_field_val_list
[
0
]))
else
:
if
offset
>
0
:
if
offset
>
0
:
# 首次搜索时不需要过滤已读
have_read_topic_id_list
=
list
(
json
.
loads
(
redis_field_val_list
[
0
]))
user_similar_score_redis_key
=
"physical:user_similar_score:user_id:"
+
str
(
user_id
)
...
...
@@ -89,30 +78,44 @@ def get_home_recommend_topic_ids(user_id, device_id, tag_id, offset, size, query
user_similar_score_redis_list
=
json
.
loads
(
redis_user_similar_score_redis_val
)
if
redis_user_similar_score_redis_val
else
[]
redis_tag_data
=
redis_client
.
hget
(
"physical:linucb:register_user_tag_info"
,
user_id
)
attention_tag_list
=
json
.
loads
(
redis_tag_data
)
if
redis_tag_data
else
[]
logging
.
info
(
"attention_tag_list:
%
s"
%
(
str
(
attention_tag_list
)))
if
len
(
recommend_topic_list
)
>
0
:
size
=
size
-
len
(
recommend_topic_list
)
have_read_topic_id_list
.
extend
(
recommend_topic_list
)
have_read_topic_id_list_add_promote
=
list
()
have_read_topic_id_list_add_promote
.
extend
(
have_read_topic_id_list
)
promote_recommend_topic_id_list
=
TopicHomeRecommend
.
objects
.
using
(
settings
.
SLAVE_DB_NAME
)
.
filter
(
is_online
=
1
)
.
values_list
(
"topic_id"
,
flat
=
True
)
for
topic_id
in
promote_recommend_topic_id_list
:
have_read_topic_id_list_add_promote
.
append
(
topic_id
)
recommend_topic_list
=
list
()
if
query
is
None
:
# linucb 推荐帖子
topic_recommend_redis_key
=
"physical:linucb:topic_recommend:device_id:"
+
str
(
device_id
)
recommend_topic_dict
=
redis_client
.
hgetall
(
topic_recommend_redis_key
)
if
b
"data"
in
recommend_topic_dict
:
recommend_topic_id_list
=
json
.
loads
(
recommend_topic_dict
[
b
"data"
])
# 推荐帖子是强插的,要保证推荐帖子不在已读里
recommend_topic_id_list
=
list
(
set
(
recommend_topic_id_list
)
-
set
(
have_read_topic_id_list
))
cursor
=
int
(
str
(
recommend_topic_dict
[
b
"cursor"
],
encoding
=
"utf-8"
))
newcursor
=
cursor
+
6
if
len
(
recommend_topic_id_list
)
>
newcursor
:
recommend_topic_list
=
recommend_topic_id_list
[
cursor
:
newcursor
]
redis_client
.
hset
(
topic_recommend_redis_key
,
"cursor"
,
newcursor
)
# 用户关注标签
redis_tag_data
=
redis_client
.
hget
(
"physical:linucb:register_user_tag_info"
,
user_id
)
attention_tag_list
=
json
.
loads
(
redis_tag_data
)
if
redis_tag_data
else
[]
if
len
(
recommend_topic_list
)
>
0
:
size
=
size
-
len
(
recommend_topic_list
)
have_read_topic_id_list
.
extend
(
recommend_topic_list
)
# have_read_topic_id_list_add_promote = list()
# have_read_topic_id_list_add_promote.extend(have_read_topic_id_list)
# promote_recommend_topic_id_list = TopicHomeRecommend.objects.using(settings.SLAVE_DB_NAME).filter(
# is_online=1).values_list("topic_id",flat=True)
#
# for topic_id in promote_recommend_topic_id_list:
# have_read_topic_id_list_add_promote.append(topic_id)
topic_id_list
=
list
()
rank_topic_id_list
=
TopicUtils
.
get_recommend_topic_ids
(
user_id
=
user_id
,
tag_id
=
tag_id
,
offset
=
offset
,
size
=
size
,
single_size
=
size
,
query
=
query
,
query_type
=
query_type
,
filter_topic_id_list
=
have_read_topic_id_list_add_promote
,
recommend_tag_list
=
recommend_topic_list
,
user_similar_score_list
=
user_similar_score_redis_list
,
index_type
=
"topic"
,
routing
=
"4,5"
,
attention_tag_list
=
attention_tag_list
)
filter_topic_id_list
=
have_read_topic_id_list
,
user_similar_score_list
=
user_similar_score_redis_list
,
index_type
=
"topic"
,
routing
=
"4,5,6"
,
attention_tag_list
=
attention_tag_list
)
if
(
len
(
recommend_topic_list
)
==
6
)
:
if
len
(
recommend_topic_list
)
==
6
and
query
is
None
:
if
(
size
<
11
):
topic_id_list
.
extend
(
rank_topic_id_list
[
0
:
3
])
topic_id_list
.
extend
(
recommend_topic_list
[
0
:
3
])
...
...
@@ -126,8 +129,6 @@ def get_home_recommend_topic_ids(user_id, device_id, tag_id, offset, size, query
else
:
topic_id_list
.
extend
(
rank_topic_id_list
)
logging
.
info
(
"attention_tag_list:
%
s"
%
(
str
(
topic_id_list
)))
have_read_topic_id_list
.
extend
(
topic_id_list
)
if
len
(
have_read_topic_id_list
)
>
30000
:
cut_len
=
len
(
have_read_topic_id_list
)
-
30000
...
...
@@ -276,7 +277,7 @@ def topic_detail_page_recommend(device_id="", user_id=-1, topic_id=-1, topic_pic
result_list
=
TopicUtils
.
get_topic_detail_recommend_list
(
user_id
,
topic_id
,
topic_tag_list
,
topic_pictorial_id
,
topic_user_id
,
filter_topic_user_id
,
have_read_topic_list
,
offset
,
size
,
es_cli_obj
,
index_type
=
"topic"
,
routing
=
"4,5"
)
have_read_topic_list
,
offset
,
size
,
es_cli_obj
,
index_type
=
"topic"
,
routing
=
"4,5
,6
"
)
recommend_topic_ids_list
=
list
()
if
len
(
result_list
)
>
0
:
recommend_topic_ids_list
=
[
item
[
"_source"
][
"id"
]
for
item
in
result_list
]
...
...
@@ -351,7 +352,7 @@ def query_topic_by_user_similarity(topic_similarity_score_dict, offset=0, size=1
must_topic_id_list
=
list
(
topic_similarity_score_dict
.
keys
())
topic_id_list
=
TopicUtils
.
get_recommend_topic_ids
(
tag_id
=
0
,
user_id
=-
1
,
offset
=
offset
,
size
=
size
,
single_size
=
size
,
must_topic_id_list
=
must_topic_id_list
,
index_type
=
"topic"
,
routing
=
"4,5"
)
must_topic_id_list
=
must_topic_id_list
,
index_type
=
"topic"
,
routing
=
"4,5
,6
"
)
return
{
"recommend_topic_ids"
:
topic_id_list
}
except
:
...
...
trans2es/mapping/topic-high-star.json
View file @
ac6c6ee7
...
...
@@ -51,6 +51,7 @@
"analyzer"
:
"gm_default_index"
,
"search_analyzer"
:
"gm_default_index"
},
"is_excellent"
:{
"type"
:
"long"
}
"is_excellent"
:{
"type"
:
"long"
},
"is_operation_home_recommend"
:
{
"type"
:
"boolean"
}
//是否首页运营推荐
}
}
trans2es/mapping/topic-star-routing.json
View file @
ac6c6ee7
...
...
@@ -51,6 +51,7 @@
"analyzer"
:
"gm_default_index"
,
"search_analyzer"
:
"gm_default_index"
},
"is_excellent"
:{
"type"
:
"long"
}
"is_excellent"
:{
"type"
:
"long"
},
"is_operation_home_recommend"
:
{
"type"
:
"boolean"
}
//是否首页运营推荐
}
}
trans2es/mapping/topic-v1.json
View file @
ac6c6ee7
{
"dynamic"
:
"strict"
,
"_routing"
:
{
"required"
:
true
},
"properties"
:
{
"id"
:{
"type"
:
"long"
},
"is_online"
:{
"type"
:
"boolean"
},
//上线
"is_deleted"
:{
"type"
:
"boolean"
},
"vote_num"
:{
"type"
:
"long"
},
"total_vote_num"
:{
"type"
:
"long"
,
"default"
:
0
},
"total_vote_num"
:{
"type"
:
"long"
},
"reply_num"
:{
"type"
:
"long"
},
"name"
:{
"type"
:
"text"
,
"analyzer"
:
"gm_default_index"
,
"search_analyzer"
:
"gm_default_index"
},
"description"
:{
"type"
:
"text"
,
"analyzer"
:
"gm_default_index"
,
"search_analyzer"
:
"gm_default_index"
},
...
...
@@ -49,7 +50,8 @@
"type"
:
"text"
,
"analyzer"
:
"gm_default_index"
,
"search_analyzer"
:
"gm_default_index"
}
},
"is_excellent"
:{
"type"
:
"long"
},
"is_operation_home_recommend"
:
{
"type"
:
"boolean"
}
//是否首页运营推荐
}
}
trans2es/mapping/topic.json
View file @
ac6c6ee7
...
...
@@ -51,6 +51,7 @@
"analyzer"
:
"gm_default_index"
,
"search_analyzer"
:
"gm_default_index"
},
"is_excellent"
:{
"type"
:
"long"
}
"is_excellent"
:{
"type"
:
"long"
},
"is_operation_home_recommend"
:
{
"type"
:
"boolean"
}
//是否首页运营推荐
}
}
trans2es/models/topic.py
View file @
ac6c6ee7
...
...
@@ -197,8 +197,8 @@ class Topic(models.Model):
offline_score
+=
6.0
elif
self
.
content_level
==
'4'
:
offline_score
+=
5.0
elif
self
.
content_level
==
'
3
'
:
offline_score
+=
2
.0
elif
self
.
content_level
==
'
6
'
:
offline_score
+=
100
.0
# exposure_count = ActionSumAboutTopic.objects.using(settings.SLAVE_DB_NAME).filter(topic_id=self.id, data_type=1).count()
# click_count = ActionSumAboutTopic.objects.using(settings.SLAVE_DB_NAME).filter(topic_id=self.id, data_type=2).count()
...
...
@@ -289,4 +289,5 @@ class TopicHomeRecommend(models.Model):
db_table
=
"topic_home_recommend"
id
=
models
.
IntegerField
(
verbose_name
=
u"id"
,
primary_key
=
True
)
topic_id
=
models
.
IntegerField
(
verbose_name
=
u"帖子ID"
)
is_online
=
models
.
BooleanField
(
verbose_name
=
u'是否上线'
)
\ No newline at end of file
is_online
=
models
.
BooleanField
(
verbose_name
=
u'是否上线'
)
is_deleted
=
models
.
BooleanField
(
verbose_name
=
u'是否删除'
)
trans2es/utils/topic_transfer.py
View file @
ac6c6ee7
...
...
@@ -9,7 +9,7 @@ import time
import
re
import
datetime
from
trans2es.models.user
import
User
from
trans2es.models.topic
import
ExcellentTopic
from
trans2es.models.topic
import
ExcellentTopic
,
TopicHomeRecommend
class
TopicTransfer
(
object
):
...
...
@@ -121,6 +121,11 @@ class TopicTransfer(object):
else
:
res
[
"is_excellent"
]
=
0
res
[
"is_operation_home_recommend"
]
=
False
operation_home_recommend
=
TopicHomeRecommend
.
objects
.
filter
(
topic_id
=
instance
.
id
)
.
first
()
if
operation_home_recommend
and
operation_home_recommend
.
is_online
and
not
operation_home_recommend
.
is_deleted
:
res
[
"is_operation_home_recommend"
]
=
True
logging
.
info
(
"test topic transfer time cost,time0:
%
d,time1:
%
d,time2:
%
d,time3:
%
d,time4:
%
d"
%
(
time0
,
time1
,
time2
,
time3
,
time4
))
return
res
except
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment