diary2.0.py 11.5 KB
Newer Older
张彦钊's avatar
张彦钊 committed
1 2 3 4 5 6 7 8 9 10 11 12
import pickle
import xlearn as xl
import pandas as pd
import pymysql
from datetime import datetime
# utils 包必须要导,否则ffm转化时用到的pickle找不到utils,会报错
import utils
import warnings
from multiprocessing import Pool
import json
from sklearn.preprocessing import MinMaxScaler
import time
张彦钊's avatar
张彦钊 committed
13
# from userProfile import get_active_users
张彦钊's avatar
张彦钊 committed
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
import os


def get_video_id():
    db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='eagle')
    cursor = db.cursor()
    sql = "select diary_id from feed_diary_boost;"
    cursor.execute(sql)
    result = cursor.fetchall()
    df = pd.DataFrame(list(result))
    video_id = df[0].values.tolist()
    print(video_id[:10])
    db.close()
    return video_id

# 将device_id、city_id拼接到对应的城市热门日记表。注意:下面预测集特征顺序要与训练集保持一致
def feature_en(x_list, device_id):
    data = pd.DataFrame(x_list)
    # 下面的列名一定要用cid,不能用diaryid,因为预测模型用到的ffm上是cid
    data = data.rename(columns={0: "cid"})
    data["device_id"] = device_id
    now = datetime.now()
    data["hour"] = now.hour
    data["minute"] = now.minute
    data.loc[data["hour"] == 0, ["hour"]] = 24
    data.loc[data["minute"] == 0, ["minute"]] = 60
    data["hour"] = data["hour"].astype("category")
    data["minute"] = data["minute"].astype("category")
    # 虽然预测y,但ffm转化需要y,并不影响预测结果
    data["y"] = 0
    # print("done 特征工程")

    return data


# 把ffm.pkl load进来,将上面的表转化为ffm格式
张彦钊's avatar
张彦钊 committed
50
def transform_ffm_format(df,queue_name,device_id):
张彦钊's avatar
张彦钊 committed
51 52
    # with open(DIRECTORY_PATH + "ffm.pkl", "rb") as f:
    with open("/Users/mac/utils/ffm.pkl", "rb") as f:
张彦钊's avatar
张彦钊 committed
53 54
        ffm_format_pandas = pickle.load(f)
        data = ffm_format_pandas.native_transform(df)
张彦钊's avatar
张彦钊 committed
55 56
        # predict_file_name = DIRECTORY_PATH + "result/{0}_{1}.csv".format(device_id, queue_name)
        predict_file_name = "/Users/mac/utils/result/{0}.csv".format(queue_name)
张彦钊's avatar
张彦钊 committed
57
        data.to_csv(predict_file_name, index=False, header=None)
张彦钊's avatar
张彦钊 committed
58
        print("done ffm")
张彦钊's avatar
张彦钊 committed
59 60 61 62
        return predict_file_name


# 将模型加载,预测
张彦钊's avatar
张彦钊 committed
63 64
def predict(queue_name,queue_arg,device_id,city_id):
    data = feature_en(queue_arg[0], device_id)
张彦钊's avatar
张彦钊 committed
65 66 67 68 69 70
    data_file_path = transform_ffm_format(data,queue_name)

    ffm_model = xl.create_ffm()
    ffm_model.setTest(data_file_path)
    ffm_model.setSigmoid()

张彦钊's avatar
张彦钊 committed
71 72 73
    ffm_model.predict("/Users/mac/utils/model.out",
                      "/Users/mac/utils/result/{0}_output.txt".format(queue_name))
    # ffm_model.predict(DIRECTORY_PATH + "model.out",
张彦钊's avatar
张彦钊 committed
74 75
    #                   DIRECTORY_PATH + "result/output{0}_{1}.csv".format(device_id, queue_name))
    return save_result(queue_name,queue_arg,device_id)
张彦钊's avatar
张彦钊 committed
76 77


张彦钊's avatar
张彦钊 committed
78 79
def save_result(queue_name,queue_arg,device_id):
    # score_df = pd.read_csv(DIRECTORY_PATH + "result/output{0}_{1}.csv".format(device_id, queue_name), header=None)
张彦钊's avatar
张彦钊 committed
80
    score_df = pd.read_csv("/Users/mac/utils/result/{0}_output.txt".format(queue_name), header=None)
张彦钊's avatar
张彦钊 committed
81 82 83 84 85
    # print(score_df)
    mm_scaler = MinMaxScaler()
    mm_scaler.fit(score_df)
    score_df = pd.DataFrame(mm_scaler.transform(score_df))
    score_df = score_df.rename(columns={0: "score"})
张彦钊's avatar
张彦钊 committed
86
    score_df["cid"] = queue_arg[0]
张彦钊's avatar
张彦钊 committed
87 88 89 90 91
    # 去掉cid前面的"diary|"
    score_df["cid"] = score_df["cid"].apply(lambda x:x[6:])
    print("score_df:")
    print(score_df.head(1))
    print(score_df.shape)
张彦钊's avatar
张彦钊 committed
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    if queue_arg[1] != []:
        df_temp = pd.DataFrame(queue_arg[1]).rename(columns={0: "cid"})
        df_temp["score"] = 0
        df_temp = df_temp.sort_index(axis=1,ascending=False)
        df_temp["cid"] = df_temp["cid"].apply(lambda x: x[6:])
        print("temp_df:")
        print(df_temp.head(1))
        print(df_temp.shape)

        predict_score_df = score_df.append(df_temp)
        print("score_df:")
        print(predict_score_df.head(1))
        print(predict_score_df.shape)

        return merge_score(queue_name, queue_arg, predict_score_df)
张彦钊's avatar
张彦钊 committed
107

张彦钊's avatar
张彦钊 committed
108 109
    else:
        return merge_score(queue_name, queue_arg, score_df)
张彦钊's avatar
张彦钊 committed
110 111


张彦钊's avatar
张彦钊 committed
112
def merge_score(queue_name, queue_arg, predict_score_df):
张彦钊's avatar
张彦钊 committed
113 114 115 116 117
    db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work',
                         passwd='workwork', db='zhengxing_test')
    cursor = db.cursor()

    # 去除diary_id 前面的"diary|"
张彦钊's avatar
张彦钊 committed
118 119
    diary_list = tuple(list(map(lambda x:x[6:],queue_arg[2])))
    print(diary_list)
张彦钊's avatar
张彦钊 committed
120 121 122 123 124 125
    sql = "select score,diary_id from biz_feed_diary_score where diary_id in {};".format(diary_list)
    cursor.execute(sql)
    result = cursor.fetchall()
    score_df = pd.DataFrame(list(result)).rename(columns = {0:"score",1:"cid"})

    print("日记打分表")
张彦钊's avatar
张彦钊 committed
126
    print(score_df.head(2))
张彦钊's avatar
张彦钊 committed
127 128 129 130 131 132 133 134 135 136 137 138
    db.close()

    return update_dairy_queue(score_df,predict_score_df)


def update_dairy_queue(score_df,predict_score_df):
    diary_id = score_df["cid"].values.tolist()
    video_id = []
    x = 1
    while x < len(diary_id):
        video_id.append(diary_id[x])
        x += 5
张彦钊's avatar
张彦钊 committed
139

张彦钊's avatar
张彦钊 committed
140 141 142 143
    if len(video_id)>0:
        not_video = list(set(diary_id) - set(video_id))
        # 为了相加时,cid能够匹配,先把cid变成索引,相加后,再把cid恢复成列

张彦钊's avatar
张彦钊 committed
144 145 146 147 148 149 150
        not_video_df = score_df.loc[score_df["cid"].isin(not_video)].set_index(["cid"])
        not_video_predict_df = predict_score_df.loc[predict_score_df["cid"].isin(not_video)].set_index(["cid"])
        not_video_df["score"] = not_video_df["score"] + not_video_predict_df["score"]
        not_video_df = not_video_df.sort_values(by="score", ascending=False)

        video_df = score_df.loc[score_df["cid"].isin(video_id)].set_index(["cid"])
        video_predict_df = predict_score_df.loc[predict_score_df["cid"].isin(video_id)].set_index(["cid"])
张彦钊's avatar
张彦钊 committed
151
        video_df["score"] = video_df["score"] + video_predict_df["score"]
张彦钊's avatar
张彦钊 committed
152
        video_df = video_df.sort_values(by="score", ascending=False)
张彦钊's avatar
张彦钊 committed
153

张彦钊's avatar
张彦钊 committed
154 155
        not_video_id = not_video_df.index.tolist()
        video_id = video_df.index.tolist()
张彦钊's avatar
张彦钊 committed
156 157 158 159 160 161 162
        diary_id = not_video_id
        i = 1
        for j in video_id:
            diary_id.insert(i, j)
            # TODO 下面的3是测试用的,如果上线后,把3改成5
            i += 3

张彦钊's avatar
张彦钊 committed
163
        print("分数合并成功")
张彦钊's avatar
张彦钊 committed
164 165 166
        return diary_id
    # 如果没有视频日记
    else:
张彦钊's avatar
张彦钊 committed
167 168
        score_df = score_df.set_index(["cid"])
        predict_score_df = predict_score_df.set_index(["cid"])
张彦钊's avatar
张彦钊 committed
169 170
        score_df["score"]=score_df["score"]+predict_score_df["score"]
        score_df = score_df.sort_values(by="score", ascending=False)
张彦钊's avatar
张彦钊 committed
171 172
        print("1分数合并成功")
        return score_df.index.tolist()
张彦钊's avatar
张彦钊 committed
173 174


175
def update_sql_dairy_queue(queue_name, diary_id,device_id, city_id):
张彦钊's avatar
张彦钊 committed
176 177 178
    db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work',
                         passwd='workwork', db='doris_test')
    cursor = db.cursor()
张彦钊's avatar
张彦钊 committed
179 180 181
    id_str = str(diary_id[0])
    for i in range(1, len(diary_id)):
        id_str = id_str + "," + str(diary_id[i])
张彦钊's avatar
张彦钊 committed
182
    print("写入前")
张彦钊's avatar
张彦钊 committed
183
    print(id_str[:80])
张彦钊's avatar
张彦钊 committed
184
    sql = "update device_diary_queue set {}='{}' where device_id = '{}' and city_id = '{}'".format\
185
        (queue_name,id_str,device_id, city_id)
张彦钊's avatar
张彦钊 committed
186
    cursor.execute(sql)
张彦钊's avatar
张彦钊 committed
187
    db.commit()
张彦钊's avatar
张彦钊 committed
188 189 190 191 192 193
    db.close()
    print("成功写入diaryid")


# 更新前获取最新的native_queue
def get_native_queue(device_id,city_id):
张彦钊's avatar
张彦钊 committed
194 195
    db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work',
                         passwd='workwork', db='doris_test')
张彦钊's avatar
张彦钊 committed
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    cursor = db.cursor()
    sql = "select native_queue from device_diary_queue where device_id = '{}' and city_id = '{}';".format(device_id,city_id)
    cursor.execute(sql)
    result = cursor.fetchall()
    df = pd.DataFrame(list(result))
    if not df.empty:
        native_queue = df.loc[0,0].split(",")
        native_queue = list(map(lambda x:"diary|"+str(x),native_queue))
        db.close()
        # print("成功获取native_queue")
        return native_queue
    else:
        return None


张彦钊's avatar
张彦钊 committed
211 212 213
def multi_update(queue_name,queue_arg,device_id,city_id):
    if queue_arg[0] != []:
        diary_id = predict(queue_name,queue_arg,device_id,city_id)
214
        return diary_id
张彦钊's avatar
张彦钊 committed
215 216
    else:
        print("预测集是空,不需要预测")
217
        return False
张彦钊's avatar
张彦钊 committed
218 219


张彦钊's avatar
张彦钊 committed
220
def get_queue(device_id, city_id,queue_name):
张彦钊's avatar
张彦钊 committed
221 222 223 224
    db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work',
                         passwd='workwork', db='doris_test')

    cursor = db.cursor()
张彦钊's avatar
张彦钊 committed
225 226
    sql = "select {} from device_diary_queue " \
          "where device_id = '{}' and city_id = '{}';".format(queue_name,device_id, city_id)
张彦钊's avatar
张彦钊 committed
227 228 229 230
    cursor.execute(sql)
    result = cursor.fetchall()
    df = pd.DataFrame(list(result))
    if not df.empty:
张彦钊's avatar
张彦钊 committed
231 232
        queue_list = df.loc[0,0].split(",")
        queue_list = list(map(lambda x: "diary|" + str(x), queue_list))
张彦钊's avatar
张彦钊 committed
233
        db.close()
234
        return queue_list
张彦钊's avatar
张彦钊 committed
235 236
    else:
        print("该用户对应的日记队列为空")
237
        return False
张彦钊's avatar
张彦钊 committed
238 239 240


def user_update(device_id,city_id):
241
    global native_queue_list
张彦钊's avatar
张彦钊 committed
242 243
    queue_name_list = ["native_queue","nearby_queue","nation_queue","megacity_queue"]
    for queue_name in queue_name_list:
244 245 246 247 248 249 250 251 252 253 254 255 256
        queue_list = get_queue(device_id, city_id,queue_name)
        if queue_name == "native_queue":
            native_queue_list = queue_list
        if queue_list:
            queue_predict = list(set(queue_list) & set(data_set_cid))
            queue_not_predict = list(set(queue_list) - set(data_set_cid))
            queue_arg = [queue_predict,queue_not_predict,queue_list]
            diary_id = multi_update(queue_name, queue_arg, device_id, city_id)
            if diary_id and (native_queue_list == get_native_queue(device_id,city_id)):
                update_sql_dairy_queue(queue_name, diary_id, device_id, city_id)
                print("更新结束")
            else:
                print("不需要更新日记队列")
张彦钊's avatar
张彦钊 committed
257 258
        else:
            print("日记队列为空")
张彦钊's avatar
张彦钊 committed
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

if __name__ == "__main__":
    # while True:
    # TODO 部署到线上,改一下get_active_users,现在不返回cityid,改成city_id和deviceid 组成的df
    # empty,df = get_active_users()
    # if empty:
    #     for eachFile in os.listdir("/tmp"):
    #         if "xlearn" in eachFile:
    #             os.remove("/tmp" + "/" + eachFile)
    #     time.sleep(58)
    # else:
    #     old_device_id_list = pd.read_csv(DIRECTORY_PATH + "data_set_device_id.csv")["device_id"].values.tolist()
    #     device_id_list = df["device_id"].values.tolist()
    #     # 求活跃用户和老用户的交集,也就是只预测老用户
    #     predict_list = list(set(device_id_list) & set(old_device_id_list))
    #
    #     # 只预测尾号是6的ID,这块也可以在数据库取数据时过滤一下
    #     # predict_list = list(filter(lambda x:str(x)[-1] == "6", predict_list))
    #     df = df.loc[df["device_id"].isin(predict_list)]
    #     device_list = df["device_id"].values.tolist()
    #     city_list = df["city_id"].values.tolist()
    #     device_city_list = list(zip(device_list,city_list))
    #     start = time.time()

张彦钊's avatar
张彦钊 committed
283 284
# 测试改生产改一下模型、pickle、输出文件路径、读取文件路径

张彦钊's avatar
张彦钊 committed
285
    warnings.filterwarnings("ignore")
张彦钊's avatar
张彦钊 committed
286 287 288
    # data_set_cid = pd.read_csv(DIRECTORY_PATH + "data_set_cid.csv")["cid"].values.tolist()
    data_set_cid = pd.read_csv("/Users/mac/utils/data_set_cid.csv")["cid"].values.tolist()
    device_city_list = [("356156075348110","tianjin")]
张彦钊's avatar
张彦钊 committed
289
    if device_city_list != []:
张彦钊's avatar
张彦钊 committed
290 291
        for i in device_city_list:
            user_update(i[0], i[1])
张彦钊's avatar
张彦钊 committed
292 293 294 295 296 297

    else:
        print("该列表是新用户,不需要预测")
    end = time.time()


张彦钊's avatar
张彦钊 committed
298
# # TODO 上线后把预测用户改成多进程预测
张彦钊's avatar
张彦钊 committed
299 300 301 302 303