feature_test.py 19.5 KB
Newer Older
张彦钊's avatar
张彦钊 committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
# -*- coding: utf-8 -*-
import pymysql
from pyspark.conf import SparkConf
import pytispark.pytispark as pti
from pyspark.sql import SparkSession
import datetime
import pandas as pd
import time
from pyspark import StorageLevel


def app_list_func(x,l):
    b = str(x).split(",")
    e = []
    for i in b:
        if i in l.keys():
            e.append(l[i])
        else:
            e.append(0)
    return e


def get_list(db,sql,n):
    cursor = db.cursor()
    cursor.execute(sql)
    result = cursor.fetchall()
    v = list(set([i[0] for i in result]))
    app_list_value = [str(i).split(",") for i in v]
    app_list_unique = []
    for i in app_list_value:
        app_list_unique.extend(i)
    app_list_unique = list(set(app_list_unique))
    number = len(app_list_unique)
    app_list_map = dict(zip(app_list_unique, list(range(n, number + n))))
    db.close()
    return number, app_list_map


def get_map():
    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select app_list from device_app_list"
    a = time.time()
    apps_number, app_list_map = get_list(db,sql,16)
    print("applist")
    print((time.time()-a)/60)
    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select level2_ids from diary_feat"
    b = time.time()
    leve2_number, leve2_map = get_list(db, sql, 16+apps_number)
    print("leve2")
    print((time.time() - b) / 60)
    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select level3_ids from diary_feat"
    c = time.time()
    leve3_number, leve3_map = get_list(db, sql, 16+leve2_number+apps_number)
    print((time.time() - c) / 60)
    return apps_number, app_list_map,leve2_number, leve2_map,leve3_number, leve3_map


def get_unique(db,sql):
    cursor = db.cursor()
    cursor.execute(sql)
    result = cursor.fetchall()
    v = list(set([i[0] for i in result]))
    db.close()
    print(sql)
    print(len(v))
    return v

def con_sql(db,sql):
    cursor = db.cursor()
    cursor.execute(sql)
    result = cursor.fetchall()
    df = pd.DataFrame(list(result))
    db.close()
    return df


def get_pre_number():
    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select count(*) from esmm_pre_data"
    cursor = db.cursor()
    cursor.execute(sql)
    result = cursor.fetchone()[0]
    print("预测集数量:")
    print(result)
    db.close()


def feature_engineer():
    apps_number, app_list_map, level2_number, leve2_map, level3_number, leve3_map = get_map()
    unique_values = []
    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select distinct stat_date from esmm_train_data_dwell"
    unique_values.extend(get_unique(db,sql))

    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select distinct ucity_id from esmm_train_data_dwell"
    unique_values.extend(get_unique(db, sql))

    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select distinct ccity_name from esmm_train_data_dwell"
    unique_values.extend(get_unique(db, sql))

    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select distinct time from cid_time_cut"
    unique_values.extend(get_unique(db, sql))

    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select distinct device_type from user_feature"
    unique_values.extend(get_unique(db, sql))

    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select distinct manufacturer from user_feature"
    unique_values.extend(get_unique(db, sql))

    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select distinct channel from user_feature"
    unique_values.extend(get_unique(db, sql))

    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select distinct top from cid_type_top"
    unique_values.extend(get_unique(db, sql))

    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select distinct price_min from knowledge"
    unique_values.extend(get_unique(db, sql))

    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select distinct treatment_method from knowledge"
    unique_values.extend(get_unique(db, sql))

    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select distinct price_max from knowledge"
    unique_values.extend(get_unique(db, sql))

    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select distinct treatment_time from knowledge"
    unique_values.extend(get_unique(db, sql))

    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select distinct maintain_time from knowledge"
    unique_values.extend(get_unique(db, sql))

    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select distinct recover_time from knowledge"
    unique_values.extend(get_unique(db, sql))

    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select max(stat_date) from esmm_train_data_dwell"
    validate_date = con_sql(db, sql)[0].values.tolist()[0]
    print("validate_date:" + validate_date)
    temp = datetime.datetime.strptime(validate_date, "%Y-%m-%d")
张彦钊's avatar
张彦钊 committed
154
    start = (temp - datetime.timedelta(days=3)).strftime("%Y-%m-%d")
张彦钊's avatar
张彦钊 committed
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    print(start)

    db = pymysql.connect(host='172.16.40.158', port=4000, user='root', passwd='3SYz54LS9#^9sBvC')
    sql = "select doctor.hospital_id from jerry_test.esmm_train_data_dwell e " \
          "left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id " \
          "left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id " \
          "where e.stat_date >= '{}'".format(start)
    unique_values.extend(get_unique(db, sql))
    features = ["ucity_id", "ccity_name", "device_type", "manufacturer",
                "channel", "top", "time", "stat_date", "hospital_id",
                "treatment_method", "price_min", "price_max", "treatment_time", "maintain_time", "recover_time"]
    unique_values.extend(features)
    print("unique_values length")
    print(len(unique_values))
    print("特征维度:")
    print(apps_number + level2_number + level3_number + len(unique_values))

    temp = list(range(16 + apps_number + level2_number + level3_number,
                      16 + apps_number + level2_number + level3_number + len(unique_values)))
    value_map = dict(zip(unique_values, temp))

张彦钊's avatar
张彦钊 committed
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    sql = "select e.y,e.z,e.stat_date,e.ucity_id,feat.level2_ids,e.ccity_name,u.device_type,u.manufacturer," \
          "u.channel,c.top,cut.time,dl.app_list,feat.level3_ids,doctor.hospital_id," \
          "wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4," \
          "ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7," \
          "k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time " \
          "from jerry_test.esmm_train_data_dwell e left join jerry_test.user_feature u on e.device_id = u.device_id " \
          "left join jerry_test.cid_type_top c on e.device_id = c.device_id " \
          "left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid " \
          "left join jerry_test.device_app_list dl on e.device_id = dl.device_id " \
          "left join jerry_test.diary_feat feat on e.cid_id = feat.diary_id " \
          "left join jerry_test.knowledge k on feat.level2 = k.level2_id " \
          "left join jerry_test.wiki_tag wiki on e.device_id = wiki.device_id " \
          "left join jerry_test.question_tag question on e.device_id = question.device_id " \
          "left join jerry_test.search_tag search on e.device_id = search.device_id " \
          "left join jerry_test.budan_tag budan on e.device_id = budan.device_id " \
          "left join jerry_test.order_tag ot on e.device_id = ot.device_id " \
          "left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id " \
          "left join jerry_test.cart_tag cart on e.device_id = cart.device_id " \
          "left join eagle.src_zhengxing_api_service service on e.diary_service_id = service.id " \
          "left join eagle.src_zhengxing_api_doctor doctor on service.doctor_id = doctor.id " \
          "where e.stat_date >= '{}'".format(start)

    df = spark.sql(sql)

    df = df.drop_duplicates(["ucity_id", "level2_ids", "ccity_name", "device_type", "manufacturer",
                             "channel", "top", "time", "stat_date", "app_list", "hospital_id", "level3_ids",
                             "tag1", "tag2", "tag3", "tag4", "tag5", "tag6", "tag7"])

    df = df.na.fill(dict(zip(features, features)))

    rdd = df.select("stat_date", "y", "z", "app_list", "level2_ids", "level3_ids",
                    "tag1", "tag2", "tag3", "tag4", "tag5", "tag6", "tag7",
                    "ucity_id", "ccity_name", "device_type", "manufacturer", "channel", "top", "time",
                    "hospital_id", "treatment_method", "price_min", "price_max", "treatment_time",
                    "maintain_time", "recover_time").rdd.repartition(200).map(
        lambda x: (x[0], float(x[1]), float(x[2]), app_list_func(x[3], app_list_map), app_list_func(x[4], leve2_map),
                   app_list_func(x[5], leve3_map), app_list_func(x[6], leve2_map), app_list_func(x[7], leve2_map),
                   app_list_func(x[8], leve2_map), app_list_func(x[9], leve2_map), app_list_func(x[10], leve2_map),
                   app_list_func(x[11], leve2_map), app_list_func(x[12], leve2_map),
张彦钊's avatar
张彦钊 committed
215 216 217 218 219
                   [value_map.get(x[0], 1), value_map.get(x[13], 2), value_map.get(x[14], 3), value_map.get(x[15], 4),
                    value_map.get(x[16], 5), value_map.get(x[17], 6), value_map.get(x[18], 7), value_map.get(x[19], 8),
                    value_map.get(x[20], 9), value_map.get(x[21], 10),
                    value_map.get(x[22], 11), value_map.get(x[23], 12), value_map.get(x[24], 13),
                    value_map.get(x[25], 14), value_map.get(x[26], 15)]))\
张彦钊's avatar
张彦钊 committed
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        .zipWithIndex().map(lambda x:(x[0][0],x[0][1],x[0][2],x[0][3],x[0][4],x[0][5],x[0][6],x[0][7],x[0][8],
                                      x[0][9],x[0][10],x[0][11],x[0][12],x[0][13],
                                      x[1]))


    rdd.persist(storageLevel= StorageLevel.MEMORY_ONLY_SER)

    # TODO 上线后把下面train fliter 删除,因为最近一天的数据也要作为训练集

    train = rdd.map(
        lambda x: (x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9],
                   x[10], x[11], x[12], x[13],x[14]))
    f = time.time()
    spark.createDataFrame(train).toDF("y", "z", "app_list", "level2_list", "level3_list",
                                      "tag1_list", "tag2_list", "tag3_list", "tag4_list",
                                      "tag5_list", "tag6_list", "tag7_list", "ids","number") \
        .repartition(1).write.format("tfrecords").save(path=path + "test_tr/", mode="overwrite")
    h = time.time()
    print("train tfrecord done")
    print((h - f) / 60)

    print("训练集样本总量:")
    print(rdd.count())

张彦钊's avatar
张彦钊 committed
244
    # get_pre_number()
张彦钊's avatar
张彦钊 committed
245
    #
张彦钊's avatar
张彦钊 committed
246 247
    # test = rdd.filter(lambda x: x[0] == validate_date).map(
    #     lambda x: (x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9],
张彦钊's avatar
张彦钊 committed
248
    #                x[10], x[11], x[12], x[13],x[14]))
张彦钊's avatar
张彦钊 committed
249 250 251 252 253 254 255
    #
    # spark.createDataFrame(test).toDF("y", "z", "app_list", "level2_list", "level3_list",
    #                                  "tag1_list", "tag2_list", "tag3_list", "tag4_list",
    #                                  "tag5_list", "tag6_list", "tag7_list", "ids","number") \
    #     .repartition(1).write.format("tfrecords").save(path=path + "va/", mode="overwrite")
    #
    # print("va tfrecord done")
张彦钊's avatar
张彦钊 committed
256
    #
张彦钊's avatar
张彦钊 committed
257
    # rdd.unpersist()
张彦钊's avatar
张彦钊 committed
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

    return validate_date, value_map, app_list_map, leve2_map, leve3_map


def get_predict(date,value_map,app_list_map,leve2_map,leve3_map):
    sql = "select e.y,e.z,e.label,e.ucity_id,feat.level2_ids,e.ccity_name," \
          "u.device_type,u.manufacturer,u.channel,c.top,e.device_id,e.cid_id,cut.time," \
          "dl.app_list,e.hospital_id,feat.level3_ids," \
          "wiki.tag as tag1,question.tag as tag2,search.tag as tag3,budan.tag as tag4," \
          "ot.tag as tag5,sixin.tag as tag6,cart.tag as tag7," \
          "k.treatment_method,k.price_min,k.price_max,k.treatment_time,k.maintain_time,k.recover_time " \
          "from jerry_test.esmm_pre_data e " \
          "left join jerry_test.user_feature u on e.device_id = u.device_id " \
          "left join jerry_test.cid_type_top c on e.device_id = c.device_id " \
          "left join jerry_test.cid_time_cut cut on e.cid_id = cut.cid " \
          "left join jerry_test.device_app_list dl on e.device_id = dl.device_id " \
          "left join jerry_test.diary_feat feat on e.cid_id = feat.diary_id " \
          "left join jerry_test.wiki_tag wiki on e.device_id = wiki.device_id " \
          "left join jerry_test.question_tag question on e.device_id = question.device_id " \
          "left join jerry_test.search_tag search on e.device_id = search.device_id " \
          "left join jerry_test.budan_tag budan on e.device_id = budan.device_id " \
          "left join jerry_test.order_tag ot on e.device_id = ot.device_id " \
          "left join jerry_test.sixin_tag sixin on e.device_id = sixin.device_id " \
          "left join jerry_test.cart_tag cart on e.device_id = cart.device_id " \
张彦钊's avatar
张彦钊 committed
282
          "left join jerry_test.knowledge k on feat.level2 = k.level2_id"
张彦钊's avatar
张彦钊 committed
283 284 285 286 287 288 289

    features = ["ucity_id", "ccity_name", "device_type", "manufacturer",
                "channel", "top", "time", "hospital_id",
                "treatment_method", "price_min", "price_max", "treatment_time", "maintain_time", "recover_time"]

    df = spark.sql(sql)
    df = df.drop_duplicates(["ucity_id", "device_id", "cid_id"])
张彦钊's avatar
张彦钊 committed
290 291 292
    print("pre")
    print(df.count())

张彦钊's avatar
张彦钊 committed
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    df = df.na.fill(dict(zip(features, features)))
    f = time.time()
    rdd = df.select("label", "y", "z", "ucity_id", "device_id", "cid_id", "app_list", "level2_ids", "level3_ids",
                    "tag1", "tag2", "tag3", "tag4", "tag5", "tag6", "tag7",
                    "ucity_id", "ccity_name", "device_type", "manufacturer", "channel", "top", "time",
                    "hospital_id", "treatment_method", "price_min", "price_max", "treatment_time",
                    "maintain_time", "recover_time") \
        .rdd.repartition(200).map(lambda x: (x[0], float(x[1]), float(x[2]), x[3], x[4], x[5],
                                             app_list_func(x[6], app_list_map), app_list_func(x[7], leve2_map),
                                             app_list_func(x[8], leve3_map), app_list_func(x[9], leve2_map),
                                             app_list_func(x[10], leve2_map), app_list_func(x[11], leve2_map),
                                             app_list_func(x[12], leve2_map), app_list_func(x[13], leve2_map),
                                             app_list_func(x[14], leve2_map), app_list_func(x[15], leve2_map),
                                             [value_map.get(date,1), value_map.get(x[16],2),
                                              value_map.get(x[17],3), value_map.get(x[18], 4),
                                              value_map.get(x[19], 5), value_map.get(x[20], 6),
                                              value_map.get(x[21], 7), value_map.get(x[22], 8),
                                              value_map.get(x[23], 9), value_map.get(x[24], 10),
                                              value_map.get(x[25], 11), value_map.get(x[26], 12),
                                              value_map.get(x[27], 13), value_map.get(x[28], 14),
                                              value_map.get(x[29], 15)
张彦钊's avatar
张彦钊 committed
314 315 316 317 318
                                              ]))\
        .zipWithIndex().map(lambda x:(x[0][0],x[0][1],x[0][2],x[0][3],x[0][4],x[0][5],x[0][6],x[0][7],x[0][8],
                                      x[0][9],x[0][10],x[0][11],x[0][12],x[0][13],x[0][14],x[0][15],x[0][16],
                                      x[1]))

张彦钊's avatar
张彦钊 committed
319 320 321

    rdd.persist(storageLevel= StorageLevel.MEMORY_ONLY_SER)

张彦钊's avatar
张彦钊 committed
322 323 324 325
    # native_pre = spark.createDataFrame(rdd.filter(lambda x:x[0] == 0).map(lambda x:(x[3],x[4],x[5],x[17])))\
    #     .toDF("city","uid","cid_id","number")
    # print("native csv")
    # native_pre.toPandas().to_csv(local_path+"native.csv", header=True)
张彦钊's avatar
张彦钊 committed
326
    spark.createDataFrame(rdd.filter(lambda x: x[0] == 0)
张彦钊's avatar
张彦钊 committed
327 328
                          .map(lambda x: (x[1],x[2],x[6],x[7],x[8],x[9],x[10],x[11],
                                          x[12],x[13],x[14],x[15],x[16],x[17],x[3],x[4],x[5]))) \
张彦钊's avatar
张彦钊 committed
329
        .toDF("y","z","app_list", "level2_list", "level3_list","tag1_list", "tag2_list", "tag3_list", "tag4_list",
330 331
              "tag5_list", "tag6_list", "tag7_list", "ids","number","city","uid","cid_id")\
        .repartition(100).write.format("tfrecords").save(path=path+"test_native/", mode="overwrite")
张彦钊's avatar
张彦钊 committed
332 333 334
    print("native tfrecord done")
    h = time.time()
    print((h-f)/60)
张彦钊's avatar
张彦钊 committed
335

张彦钊's avatar
张彦钊 committed
336 337 338 339
    # nearby_pre = spark.createDataFrame(rdd.filter(lambda x: x[0] == 1).map(lambda x: (x[3], x[4], x[5],x[17]))) \
    #     .toDF("city", "uid", "cid_id","number")
    # print("nearby csv")
    # nearby_pre.toPandas().to_csv(local_path + "nearby.csv", header=True)
张彦钊's avatar
张彦钊 committed
340 341

    spark.createDataFrame(rdd.filter(lambda x: x[0] == 1)
342 343
                          .map(lambda x: (x[1], x[2], x[6], x[7], x[8], x[9], x[10], x[11],
                                          x[12],x[13], x[14], x[15], x[16],x[17],x[3],x[4],x[5]))) \
张彦钊's avatar
张彦钊 committed
344
        .toDF("y", "z", "app_list", "level2_list", "level3_list", "tag1_list", "tag2_list", "tag3_list", "tag4_list",
345 346
              "tag5_list", "tag6_list", "tag7_list", "ids","number","city","uid","cid_id")\
        .repartition(100).write.format("tfrecords").save(path=path + "test_nearby/", mode="overwrite")
张彦钊's avatar
张彦钊 committed
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    print("nearby tfrecord done")


if __name__ == '__main__':
    sparkConf = SparkConf().set("spark.hive.mapred.supports.subdirectories", "true") \
        .set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", "true") \
        .set("spark.tispark.plan.allow_index_double_read", "false") \
        .set("spark.tispark.plan.allow_index_read", "true") \
        .set("spark.sql.extensions", "org.apache.spark.sql.TiExtensions") \
        .set("spark.tispark.pd.addresses", "172.16.40.158:2379").set("spark.io.compression.codec", "lzf")\
        .set("spark.driver.maxResultSize", "8g").set("spark.sql.avro.compression.codec","snappy")

    spark = SparkSession.builder.config(conf=sparkConf).enableHiveSupport().getOrCreate()
    ti = pti.TiContext(spark)
    ti.tidbMapDatabase("jerry_test")
    ti.tidbMapDatabase("eagle")
    spark.sparkContext.setLogLevel("WARN")
    path = "hdfs:///strategy/esmm/"
    local_path = "/home/gmuser/esmm/"
张彦钊's avatar
张彦钊 committed
366

张彦钊's avatar
张彦钊 committed
367 368
    validate_date, value_map, app_list_map, leve2_map, leve3_map = feature_engineer()
    get_predict(validate_date, value_map, app_list_map, leve2_map, leve3_map)
张彦钊's avatar
张彦钊 committed
369 370 371 372 373 374 375 376 377

    spark.stop()