userProfile.py 15.6 KB
Newer Older
1
from utils import con_sql
2
from datetime import datetime
3 4 5 6
from config import *
import pandas as pd
import os
import time
张彦钊's avatar
张彦钊 committed
7
import pymysql
张彦钊's avatar
张彦钊 committed
8
import time
9 10


张彦钊's avatar
张彦钊 committed
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
def fetch_qa(device_id, card_type, size):
    try:
        key = '{device_id}-{card_type}-{date}'.format(device_id=device_id,
                                                      card_type=card_type, date=RecommendFeed.current_date())
        if (device_id != '0'):

            search_qa_recommend_key = "TS:search_recommend_answer_queue:device_id:" + str(device_id)
            search_qa_recommend_list = list()
            search_cursor_ts = 0
            if redis_client.exists(search_qa_recommend_key):
                search_qa_recommend_dict = redis_client.hgetall(search_qa_recommend_key)
                if b'cursor' in search_qa_recommend_dict:
                    search_cursor_ts = json.loads(search_qa_recommend_dict[b'cursor'])
                    if search_cursor_ts < 10:
                        search_qa_recommend_list = json.loads(search_qa_recommend_dict[b'answer_queue'])
                        if search_cursor_ts < len(search_qa_recommend_list):
                            size = size - 1

        try:
            que = DeviceQAQueue.objects.get(device_id=device_id)
        except DeviceQAQueue.DoesNotExist:
            que = AnswerQueue.objects.last()
        if not que:
            return []
        que = list(filter(None, que.queue.split(',')))

        # adjust args.
        cursor = redis_client.get(key) or 0
        cursor = int(cursor) % len(que)
        size = min(size, len(que))
        # redis_client.set(key, cursor + size, ex=24 * 60 * 60)
        data = list(islice(cycle(que), cursor, cursor + size))
        data = list(map(int, data))
        if cursor + 2 * size < len(que):
            redis_client.set(key, cursor + size, ex=24 * 60 * 60)
        else:
            try:
                context.request_logger.app(reset_answer_queue=True)
                cursor = 0
                redis_client.set(key, cursor, ex=24 * 60 * 60)
            except:
                redis_client.set(key, cursor + size, ex=24 * 60 * 60)

        if device_id != '0':
            if len(search_qa_recommend_list) > 0 and search_cursor_ts < len(search_qa_recommend_list):
                queue = search_qa_recommend_list[search_cursor_ts:search_cursor_ts + 1]
                queue.extend(data)
                data = queue
                new_search_cursor = search_cursor_ts + 1
                redis_client.hset(search_qa_recommend_key, 'cursor', new_search_cursor)
                redis_client.expire(search_qa_recommend_key, 30 * 24 * 60 * 60)
            read_qa_key = "TS:recommend_answer_set:device_id:" + str(device_id)
            if len(data) > 0:
                redis_client.sadd(read_qa_key, *data)
        return data
    except:
        logging_exception()
        return []

def fetch_user_topic(device_id, card_type, size):
    try:
        key = '{device_id}-{card_type}-{date}'.format(device_id=device_id, card_type=card_type,
                                                      date=RecommendFeed.current_date())

        if (device_id != '0') and size >= 2:

            search_topic_recommend_key = "TS:search_recommend_tractate_queue:device_id:" + str(device_id)
            search_topic_recommend_list = list()
            search_cursor_ts = 0
            if redis_client.exists(search_topic_recommend_key):
                search_topic_recommend_dict = redis_client.hgetall(search_topic_recommend_key)
                if b'cursor' in search_topic_recommend_dict:
                    search_cursor_ts = json.loads(search_topic_recommend_dict[b'cursor'])
                    if search_cursor_ts < 30:
                        search_topic_recommend_list = json.loads(search_topic_recommend_dict[b'tractate_queue'])
                        if search_cursor_ts < len(search_topic_recommend_list):
                            size = size - 2

        try:
            que = DeviceUserTopicQueue.objects.get(device_id=device_id)
        except DeviceUserTopicQueue.DoesNotExist:
            que = UserTopicQueue.objects.last()
        if not que:
            return []
        que = list(filter(None, que.queue.split(',')))

        # adjust args.
        cursor = redis_client.get(key) or 0
        cursor = int(cursor) % len(que)
        size = min(size, len(que))
        data = list(islice(cycle(que), cursor, cursor + size))
        data = list(map(int, data))

        if cursor + 2 * size < len(que):
            redis_client.set(key, cursor + size, ex=24 * 60 * 60)
        else:
            try:
                context.request_logger.app(reset_queue=True)
                cursor = 0
                redis_client.set(key, cursor, ex=24 * 60 * 60)
            except:
                redis_client.set(key, cursor + size, ex=24 * 60 * 60)

        if device_id != '0' and size >= 2:
            if len(search_topic_recommend_list) > 0 and search_cursor_ts < len(search_topic_recommend_list):
                queue = search_topic_recommend_list[search_cursor_ts:search_cursor_ts + 2]
                queue.extend(data)
                data = queue
                new_search_cursor = search_cursor_ts + 2
                redis_client.hset(search_topic_recommend_key, 'cursor', new_search_cursor)
                redis_client.expire(search_topic_recommend_key, 30 * 24 * 60 * 60)
            read_topic_key = "TS:recommend_tractate_set:device_id:" + str(device_id)
            if len(data) > 0:
                redis_client.sadd(read_topic_key, *data)
        return data

    except:
        logging_exception()
        return []


 def fetch_diary(cls, device_id, card_type, city_id, size):
        # first, we fetch data from personal-queue  city-queue, if not both, get data
        # from world queue.
        user_portrait_diary_part_list = list()
        click_diary_size = 1
        search_diary_size = 4
        if device_id != '0':
            user_portrait_diary_key = 'user_portrait_recommend_diary_queue:device_id:%s:%s' % (device_id, datetime.datetime.now().strftime('%Y-%m-%d'))
            if redis_client.exists(user_portrait_diary_key):
                user_portrait_diary_dict = redis_client.hgetall(user_portrait_diary_key)
                user_portrait_cursor = str(user_portrait_diary_dict[b'cursor'],encoding='utf-8')
                if user_portrait_cursor == '0':
                    if b'len_cursor' in user_portrait_diary_dict.keys():
                        user_portrait_diary_list = json.loads(user_portrait_diary_dict[b'diary_queue'])
                        len_cursor = str(user_portrait_diary_dict[b'len_cursor'],encoding='utf-8')
                        len_cursor = int(len_cursor)
                        if len(user_portrait_diary_list) - len_cursor >size:
                            user_portrait_diary_part_list = user_portrait_diary_list[len_cursor:len_cursor+size]
                            redis_client.hset(user_portrait_diary_key,'len_cursor',len_cursor+size)
                            size = 0
                        else:
                            user_portrait_diary_list = json.loads(user_portrait_diary_dict[b'diary_queue'])
                            diary_list_len = len(user_portrait_diary_list) - len_cursor
                            size = size - diary_list_len
                            user_portrait_diary_part_list = user_portrait_diary_list[len_cursor:len_cursor + diary_list_len]
                            redis_client.hset(user_portrait_diary_key, 'len_cursor', len_cursor + diary_list_len)
                            user_portrait_cursor = int(user_portrait_cursor) + 1
                            redis_client.hset(user_portrait_diary_key, 'cursor', user_portrait_cursor)
                    else:
                        user_portrait_diary_part_list = json.loads(user_portrait_diary_dict[b'diary_queue'])
                        size = size - len(user_portrait_diary_part_list)
                        user_portrait_cursor = int(user_portrait_cursor) + 1
                        redis_client.hset(user_portrait_diary_key, 'cursor', user_portrait_cursor)

        try:

            # obj = DeviceDiaryQueue.objects.filter(device_id=device_id, city_id=city_id).first()
            (local, nearby, nation, megacity, city_id) = cls.fetch_device_diary_queue_data(city_id, device_id)
            if len(local) == 0 and len(nearby) == 0 and len(nation) == 0 and len(megacity) == 0:
                (local, nearby, nation, megacity, city_id) = cls.fetch_diary_queue_data(city_id)
            # if not obj:
            #     (local, nearby, nation, megacity,city_id) = cls.fetch_diary_queue_data(city_id)
            # else:
            #     local = list(filter(None, obj.native_queue.split(','))) if obj.native_queue else []
            #     nearby = list(filter(None, obj.nearby_queue.split(','))) if obj.nearby_queue else []
            #     nation = list(filter(None, obj.nation_queue.split(','))) if obj.nation_queue else []
            #     megacity = list(filter(None, obj.megacity_queue.split(','))) if obj.megacity_queue else []
        except:
            logging_exception()
            (local, nearby, nation, megacity, city_id) = cls.fetch_diary_queue_data(city_id)

        if(device_id!='0'):

            search_diary_recommend_key = "TS:search_recommend_diary_queue:device_id:" + str(device_id)
            search_diary_recommend_list = list()
            search_cursor_ts = 0
            if redis_client.exists(search_diary_recommend_key) and size >3:
                search_diary_recommend_dict = redis_client.hgetall(search_diary_recommend_key)
                if b'cursor' in search_diary_recommend_dict:
                    search_cursor_ts = json.loads(search_diary_recommend_dict[b'cursor'])
                    search_diary_recommend_list = json.loads(search_diary_recommend_dict[b'diary_queue'])
                    if search_cursor_ts +search_diary_size < len(search_diary_recommend_list) :
                            size = size - search_diary_size

        if (device_id != '0') :
            diary_recommend_key = "TS:recommend_diary_queue:device_id:" + str(device_id)
            diary_recommend_list = list()
            if redis_client.exists(diary_recommend_key) and size > 0:
                    diary_recommend_dict = redis_client.hgetall(diary_recommend_key)
                    diary_recommend_list = json.loads(diary_recommend_dict[b'diary_queue'])
                    if len(diary_recommend_list)>0:
                        size = size -click_diary_size



        key = '{device_id}-{city_id}-{date}'.format(device_id=device_id,
                                                    city_id=city_id, date=RecommendFeed.current_date())
        # strategy rule: when user refresh over 30 loadings, reset native nearby nation queue cursor.
        counter_key = key + '-counter_v1'
        counter = redis_client.incr(counter_key)
        if counter == 1:
            redis_client.expire(counter_key, 24 * 60 * 60)
        cursor_key = key + '-cursor_v1'
        cursor = redis_client.get(cursor_key) or b'0-0-0-0'
        # if counter > 30:
        #     cursor = b'0-0-0-0'
        #     redis_client.delete(counter_key)
        cx, cy, cm, cz = map(int, cursor.split(b'-'))

        x, y, m, z = cls.get_city_scale(city_id)
        data, ncx, ncy, ncm, ncz = cls.get_scale_data(
            local, nearby, nation, megacity,
            cx, cy, cm, cz,
            x, y, z, m, size
        )

        if ncx == cx and ncy == cy:  # native queue and nearby queue
            logger.info("diary queue reach end,cx:%d,cy:%d,cm:%d,cz:%d",cx,cy,cm,cz)
            # redis_client.delete(counter_key)
            # data, ncx, ncy, ncm, ncz = cls.get_scale_data(
            #     local, nearby, nation, megacity,
            #     0, 0, 0, 0,
            #     x, y, z, m, size
            # )
            ncx = ncy = ncm = ncz = 0

        val = '-'.join(map(str, [ncx, ncy, ncm, ncz]))
        redis_client.set(cursor_key, val, ex=24 * 60 * 60)
        data = list(map(int, data))


        if device_id != '0':
            if  search_cursor_ts<len(search_diary_recommend_list)-search_diary_size:
                queue = search_diary_recommend_list[search_cursor_ts:search_cursor_ts+search_diary_size]
                queue.extend(data)
                data = queue
                new_search_cursor = search_cursor_ts +search_diary_size
                redis_client.hset(search_diary_recommend_key,'cursor',new_search_cursor)
                redis_client.expire(search_diary_recommend_key,30*24*60*60)



            if len(diary_recommend_list) >0:
                diary_id = diary_recommend_list.pop(0)
                data.insert(0,diary_id)
                if len(diary_recommend_list)>0:
                   diary_recommend_list_json = json.dumps(diary_recommend_list)
                   redis_client.hset(diary_recommend_key,'diary_queue',diary_recommend_list_json)
                   redis_client.expire(diary_recommend_key,30*24*60*60)
                else:
                   redis_client.delete(diary_recommend_key)

            if len(user_portrait_diary_part_list)>0:
                user_portrait_diary_part_list.extend(data)
                data = user_portrait_diary_part_list
            #已读
            read_diary_key = "TS:recommend_diary_set:device_id:" + str(device_id)
            if len(data)>0:
                 redis_client.sadd(read_diary_key,*data)
        return data

 def get_scale_data(local, nearby, nation, megacity, cx, cy, cm, cz, x, y, z, m, size):
        """

        :param local:           local diary queue
        :param nearby:          nearby diary queue
        :param nation:          nation diary queue
        :param megacity:        megacity diary queue
        :param cx:              seen local diary offset
        :param cy:              seen nearby diary offset
        :param cz:              seen nation diary offset
        :param cm:              seen megacity diary offset
        :param x:               local diary scale factor
        :param y:               nearby diary scale factor
        :param z:               nation diary scale factor
        :param m:               megacity diary scale factor
        :param size:            nubmer of diary
        :return:
        """
        # 本地 临近 特大城市 全国 四个层级 都按照的是四舍五入取得方式
        # 针对出现的问题,本次相应的优化是:
        # 1、如果出现两个层级为零,且有剩余坑位时,则按照本地 临近 全国的优先级,先给优先级高且为零的层级一个坑位。
        # 2、如果所有层级都非零,且有剩余坑位时,则优先给权重占比大的层级一个坑位。
        # 3、如果只有一个层级为零,且有剩余坑位时,则优先填充权重占比大的层级一个坑位。
        nx = int(round(x * 1.0 / (x + y + z + m) * size))
        ny = int(round(y * 1.0 / (x + y + z + m) * size))
        nz = int(round(z * 1.0 / (x + y + z + m) * size))
        nm = int(round(m * 1.0 / (x + y + z + m) * size))
        nxyz = [nx, ny, nm, nz]
        xyz = [x, y, m, z]
        counter = Counter([nx, ny, nm, nz])
        if counter[0] == 2:
            nxyz[nxyz.index(0)] += size - sum(nxyz)
        else:
            nxyz[xyz.index(max(xyz))] += size - sum(nxyz)
        nx, ny, nm, nz = nxyz

        slocal = local[cx:cx + nx]
        cx = min(cx + nx, len(local))
        ny += (nx - len(slocal))

        snearby = nearby[cy:cy + ny]
        cy = min(cy + ny, len(nearby))
        nm += (ny - len(snearby))

        smegacity = megacity[cm: cm + nm]
        cm = min(cm + nm, len(megacity))
        nz += (nm - len(smegacity))

        snation = nation[cz:cz + nz]
        cz = min(cz + nz, len(nation))

        return chain(slocal, snearby, smegacity, snation), cx, cy, cm, cz