1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import pickle
import xlearn as xl
import pandas as pd
import pymysql
from datetime import datetime
# utils 包必须要导,否则ffm转化时用到的pickle找不到utils,会报错
import utils
import warnings
from multiprocessing import Pool
import json
from sklearn.preprocessing import MinMaxScaler
import time
# from userProfile import get_active_users
import os
def get_video_id():
db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='eagle')
cursor = db.cursor()
sql = "select diary_id from feed_diary_boost;"
cursor.execute(sql)
result = cursor.fetchall()
df = pd.DataFrame(list(result))
video_id = df[0].values.tolist()
print(video_id[:10])
db.close()
return video_id
# 将device_id、city_id拼接到对应的城市热门日记表。注意:下面预测集特征顺序要与训练集保持一致
def feature_en(x_list, device_id):
data = pd.DataFrame(x_list)
# 下面的列名一定要用cid,不能用diaryid,因为预测模型用到的ffm上是cid
data = data.rename(columns={0: "cid"})
data["device_id"] = device_id
now = datetime.now()
data["hour"] = now.hour
data["minute"] = now.minute
data.loc[data["hour"] == 0, ["hour"]] = 24
data.loc[data["minute"] == 0, ["minute"]] = 60
data["hour"] = data["hour"].astype("category")
data["minute"] = data["minute"].astype("category")
# 虽然预测y,但ffm转化需要y,并不影响预测结果
data["y"] = 0
# print("done 特征工程")
return data
# 把ffm.pkl load进来,将上面的表转化为ffm格式
def transform_ffm_format(df,queue_name,device_id):
# with open(DIRECTORY_PATH + "ffm.pkl", "rb") as f:
with open("/Users/mac/utils/ffm.pkl", "rb") as f:
ffm_format_pandas = pickle.load(f)
data = ffm_format_pandas.native_transform(df)
# predict_file_name = DIRECTORY_PATH + "result/{0}_{1}.csv".format(device_id, queue_name)
predict_file_name = "/Users/mac/utils/result/{0}.csv".format(queue_name)
data.to_csv(predict_file_name, index=False, header=None)
print("done ffm")
return predict_file_name
# 将模型加载,预测
def predict(queue_name,queue_arg,device_id,city_id):
data = feature_en(queue_arg[0], device_id)
data_file_path = transform_ffm_format(data,queue_name)
ffm_model = xl.create_ffm()
ffm_model.setTest(data_file_path)
ffm_model.setSigmoid()
ffm_model.predict("/Users/mac/utils/model.out",
"/Users/mac/utils/result/{0}_output.txt".format(queue_name))
# ffm_model.predict(DIRECTORY_PATH + "model.out",
# DIRECTORY_PATH + "result/output{0}_{1}.csv".format(device_id, queue_name))
return save_result(queue_name,queue_arg,device_id)
def save_result(queue_name,queue_arg,device_id):
# score_df = pd.read_csv(DIRECTORY_PATH + "result/output{0}_{1}.csv".format(device_id, queue_name), header=None)
score_df = pd.read_csv("/Users/mac/utils/result/{0}_output.txt".format(queue_name), header=None)
# print(score_df)
mm_scaler = MinMaxScaler()
mm_scaler.fit(score_df)
score_df = pd.DataFrame(mm_scaler.transform(score_df))
score_df = score_df.rename(columns={0: "score"})
score_df["cid"] = queue_arg[0]
# 去掉cid前面的"diary|"
score_df["cid"] = score_df["cid"].apply(lambda x:x[6:])
print("score_df:")
print(score_df.head(1))
print(score_df.shape)
if queue_arg[1] != []:
df_temp = pd.DataFrame(queue_arg[1]).rename(columns={0: "cid"})
df_temp["score"] = 0
df_temp = df_temp.sort_index(axis=1,ascending=False)
df_temp["cid"] = df_temp["cid"].apply(lambda x: x[6:])
print("temp_df:")
print(df_temp.head(1))
print(df_temp.shape)
predict_score_df = score_df.append(df_temp)
print("score_df:")
print(predict_score_df.head(1))
print(predict_score_df.shape)
return merge_score(queue_name, queue_arg, predict_score_df)
else:
return merge_score(queue_name, queue_arg, score_df)
def merge_score(queue_name, queue_arg, predict_score_df):
db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work',
passwd='workwork', db='zhengxing_test')
cursor = db.cursor()
# 去除diary_id 前面的"diary|"
diary_list = tuple(list(map(lambda x:x[6:],queue_arg[2])))
print(diary_list)
sql = "select score,diary_id from biz_feed_diary_score where diary_id in {};".format(diary_list)
cursor.execute(sql)
result = cursor.fetchall()
score_df = pd.DataFrame(list(result)).rename(columns = {0:"score",1:"cid"})
print("日记打分表")
print(score_df.head(2))
db.close()
return update_dairy_queue(score_df,predict_score_df)
def update_dairy_queue(score_df,predict_score_df):
diary_id = score_df["cid"].values.tolist()
video_id = []
x = 1
while x < len(diary_id):
video_id.append(diary_id[x])
x += 5
if len(video_id)>0:
not_video = list(set(diary_id) - set(video_id))
# 为了相加时,cid能够匹配,先把cid变成索引,相加后,再把cid恢复成列
not_video_df = score_df.loc[score_df["cid"].isin(not_video)].set_index(["cid"])
not_video_predict_df = predict_score_df.loc[predict_score_df["cid"].isin(not_video)].set_index(["cid"])
not_video_df["score"] = not_video_df["score"] + not_video_predict_df["score"]
not_video_df = not_video_df.sort_values(by="score", ascending=False)
video_df = score_df.loc[score_df["cid"].isin(video_id)].set_index(["cid"])
video_predict_df = predict_score_df.loc[predict_score_df["cid"].isin(video_id)].set_index(["cid"])
video_df["score"] = video_df["score"] + video_predict_df["score"]
video_df = video_df.sort_values(by="score", ascending=False)
not_video_id = not_video_df.index.tolist()
video_id = video_df.index.tolist()
diary_id = not_video_id
i = 1
for j in video_id:
diary_id.insert(i, j)
# TODO 下面的3是测试用的,如果上线后,把3改成5
i += 3
print("分数合并成功")
return diary_id
# 如果没有视频日记
else:
score_df = score_df.set_index(["cid"])
predict_score_df = predict_score_df.set_index(["cid"])
score_df["score"]=score_df["score"]+predict_score_df["score"]
score_df = score_df.sort_values(by="score", ascending=False)
print("1分数合并成功")
return score_df.index.tolist()
def update_sql_dairy_queue(queue_name, diary_id,device_id, city_id):
db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work',
passwd='workwork', db='doris_test')
cursor = db.cursor()
id_str = str(diary_id[0])
for i in range(1, len(diary_id)):
id_str = id_str + "," + str(diary_id[i])
print("写入前")
print(id_str[:80])
sql = "update device_diary_queue set {}='{}' where device_id = '{}' and city_id = '{}'".format\
(queue_name,id_str,device_id, city_id)
cursor.execute(sql)
db.commit()
db.close()
print("成功写入diaryid")
# 更新前获取最新的native_queue
def get_native_queue(device_id,city_id):
db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work',
passwd='workwork', db='doris_test')
cursor = db.cursor()
sql = "select native_queue from device_diary_queue where device_id = '{}' and city_id = '{}';".format(device_id,city_id)
cursor.execute(sql)
result = cursor.fetchall()
df = pd.DataFrame(list(result))
if not df.empty:
native_queue = df.loc[0,0].split(",")
native_queue = list(map(lambda x:"diary|"+str(x),native_queue))
db.close()
# print("成功获取native_queue")
return native_queue
else:
return None
def multi_update(queue_name,queue_arg,device_id,city_id):
if queue_arg[0] != []:
diary_id = predict(queue_name,queue_arg,device_id,city_id)
return diary_id
else:
print("预测集是空,不需要预测")
return False
def get_queue(device_id, city_id,queue_name):
db = pymysql.connect(host='rdsmaqevmuzj6jy.mysql.rds.aliyuncs.com', port=3306, user='work',
passwd='workwork', db='doris_test')
cursor = db.cursor()
sql = "select {} from device_diary_queue " \
"where device_id = '{}' and city_id = '{}';".format(queue_name,device_id, city_id)
cursor.execute(sql)
result = cursor.fetchall()
df = pd.DataFrame(list(result))
if not df.empty:
queue_list = df.loc[0,0].split(",")
queue_list = list(map(lambda x: "diary|" + str(x), queue_list))
db.close()
return queue_list
else:
print("该用户对应的日记队列为空")
return False
def user_update(device_id,city_id):
global native_queue_list
queue_name_list = ["native_queue","nearby_queue","nation_queue","megacity_queue"]
for queue_name in queue_name_list:
queue_list = get_queue(device_id, city_id,queue_name)
if queue_name == "native_queue":
native_queue_list = queue_list
if queue_list:
queue_predict = list(set(queue_list) & set(data_set_cid))
queue_not_predict = list(set(queue_list) - set(data_set_cid))
queue_arg = [queue_predict,queue_not_predict,queue_list]
diary_id = multi_update(queue_name, queue_arg, device_id, city_id)
if diary_id and (native_queue_list == get_native_queue(device_id,city_id)):
update_sql_dairy_queue(queue_name, diary_id, device_id, city_id)
print("更新结束")
else:
print("不需要更新日记队列")
else:
print("日记队列为空")
if __name__ == "__main__":
# while True:
# TODO 部署到线上,改一下get_active_users,现在不返回cityid,改成city_id和deviceid 组成的df
# empty,df = get_active_users()
# if empty:
# for eachFile in os.listdir("/tmp"):
# if "xlearn" in eachFile:
# os.remove("/tmp" + "/" + eachFile)
# time.sleep(58)
# else:
# old_device_id_list = pd.read_csv(DIRECTORY_PATH + "data_set_device_id.csv")["device_id"].values.tolist()
# device_id_list = df["device_id"].values.tolist()
# # 求活跃用户和老用户的交集,也就是只预测老用户
# predict_list = list(set(device_id_list) & set(old_device_id_list))
#
# # 只预测尾号是6的ID,这块也可以在数据库取数据时过滤一下
# # predict_list = list(filter(lambda x:str(x)[-1] == "6", predict_list))
# df = df.loc[df["device_id"].isin(predict_list)]
# device_list = df["device_id"].values.tolist()
# city_list = df["city_id"].values.tolist()
# device_city_list = list(zip(device_list,city_list))
# start = time.time()
# 测试改生产改一下模型、pickle、输出文件路径、读取文件路径
warnings.filterwarnings("ignore")
# data_set_cid = pd.read_csv(DIRECTORY_PATH + "data_set_cid.csv")["cid"].values.tolist()
data_set_cid = pd.read_csv("/Users/mac/utils/data_set_cid.csv")["cid"].values.tolist()
device_city_list = [("356156075348110","tianjin")]
if device_city_list != []:
for i in device_city_list:
user_update(i[0], i[1])
else:
print("该列表是新用户,不需要预测")
end = time.time()
# # TODO 上线后把预测用户改成多进程预测