feature_engineering.py 5.4 KB
import pandas as pd
import pymysql
import datetime

def con_sql(db,sql):
    cursor = db.cursor()
    try:
        cursor.execute(sql)
        result = cursor.fetchall()
        df = pd.DataFrame(list(result))
    except Exception:
        print("发生异常", Exception)
        df = pd.DataFrame()
    finally:
        db.close()
    return df


def get_data():
    db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select max(stat_date) from esmm_train_data"
    validate_date = con_sql(db, sql)[0].values.tolist()[0]
    print("validate_date:" + validate_date)
    temp = datetime.datetime.strptime(validate_date, "%Y-%m-%d")
    start = (temp - datetime.timedelta(days=30)).strftime("%Y-%m-%d")
    print(start)
    db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select e.y,e.z,e.stat_date,e.ucity_id,e.clevel1_id,e.ccity_name," \
          "u.device_type,u.manufacturer,u.channel,c.top,df.level2_ids,e.device_id,cut.time " \
          "from esmm_train_data e left join user_feature u on e.device_id = u.device_id " \
          "left join cid_type_top c on e.device_id = c.device_id " \
          "left join diary_feat df on e.cid_id = df.diary_id " \
          "left join cid_time_cut cut on e.cid_id = cut.cid " \
          "where e.stat_date >= '{}'".format(start)
    df = con_sql(db, sql)
    # print(df.shape)
    df = df.rename(columns={0: "y", 1: "z", 2: "stat_date", 3: "ucity_id", 4: "clevel1_id", 5: "ccity_name",
                            6: "device_type", 7: "manufacturer", 8: "channel", 9: "top", 10: "level2_ids",
                            11: "device_id", 12: "time"})
    print("esmm data ok")
    # print(df.head(2)
    print("before")
    print(df.shape)
    print("after")
    df = df.drop_duplicates()
    features = ["ucity_id", "clevel1_id", "ccity_name", "device_type", "manufacturer",
                             "channel", "top", "level2_ids", "time", "stat_date"]
    df = df.drop_duplicates(features)
    print(df.shape)

    unique_values = []
    for i in features:
        df[i] = df[i].astype("str")
        df[i] = df[i].fillna("lost")
        df[i] = df[i] + i
        unique_values.extend(list(df[i].unique()))
    print(df.head(2))

    value_map = {v: k for k, v in enumerate(unique_values)}

    df = df.drop("device_id", axis=1)
    train = df[df["stat_date"] != validate_date+"stat_date"]
    test = df[df["stat_date"] == validate_date+"stat_date"]
    for i in features:
        train[i] = train[i].map(value_map)
        train[i] = train[i].astype('int64')
        test[i] = test[i].map(value_map)
        test[i] = test[i].astype('int64')

    print("train shape")
    print(train.shape)
    print("test shape")
    print(test.shape)

    write_csv(train, "tr",100000)
    write_csv(test, "va",80000)

    return validate_date,value_map


def write_csv(df,name,n):
    for i in range(0, df.shape[0], n):
        if i == 0:
            temp = df.iloc[0:n]
        elif i + n > df.shape[0]:
            temp = df.iloc[i:]
        else:
            temp = df.loc[i:i + n]
        temp.to_csv(path + name+ "/{}{}.csv".format(name,i), index=False)


def get_predict(date,value_map):
    db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='jerry_test')
    sql = "select e.y,e.z,e.label,e.ucity_id,e.clevel1_id,e.ccity_name," \
          "u.device_type,u.manufacturer,u.channel,c.top,df.level2_ids,e.device_id,e.cid_id,cut.time " \
          "from esmm_pre_data e left join user_feature u on e.device_id = u.device_id " \
          "left join cid_type_top c on e.device_id = c.device_id " \
          "left join diary_feat df on e.cid_id = df.diary_id " \
          "left join cid_time_cut cut on e.cid_id = cut.cid"
    df = con_sql(db, sql)
    df = df.rename(columns={0: "y", 1: "z", 2: "label", 3: "ucity_id", 4: "clevel1_id", 5: "ccity_name",
                            6: "device_type", 7: "manufacturer", 8: "channel", 9: "top", 10: "level2_ids",
                            11: "device_id", 12: "cid_id", 13: "time"})

    df["stat_date"] = date

    print("predict shape")
    print(df.shape)

    features = ["ucity_id", "clevel1_id", "ccity_name", "device_type", "manufacturer",
                "channel", "top", "level2_ids", "time", "stat_date"]
    for i in features:
        df[i] = df[i].astype("str")
        df[i] = df[i].fillna("lost")
        df[i] = df[i] + i

    native_pre = df[df["label"] == 0]
    native_pre = native_pre.drop("label", axis=1)
    nearby_pre = df[df["label"] == 1]
    nearby_pre = nearby_pre.drop("label", axis=1)

    for i in features:
        native_pre[i] = native_pre[i].map(value_map)
        # TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下
        native_pre[i] = native_pre[i].fillna(0)
        native_pre[i] = native_pre[i].astype('int64')
        nearby_pre[i] = nearby_pre[i].map(value_map)
        # TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下
        nearby_pre[i] = nearby_pre[i].fillna(0)
        nearby_pre[i] = nearby_pre[i].astype('int64')

    print("native")
    print(native_pre.shape)
    write_csv(native_pre, "native",200000)

    print("nearby")
    print(nearby_pre.shape)
    write_csv(nearby_pre, "nearby", 160000)


if __name__ == '__main__':
    path = "/home/gmuser/esmm_data/"
    date,value = get_data()
    get_predict(date, value)