Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
F
ffm-baseline
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ML
ffm-baseline
Commits
c6a363bc
Commit
c6a363bc
authored
Jan 16, 2019
by
张彦钊
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
split file
parent
d583afd3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
26 additions
and
5 deletions
+26
-5
feature_engineering.py
tensnsorflow/feature_engineering.py
+23
-4
test.py
tensnsorflow/test.py
+2
-1
train.py
tensnsorflow/train.py
+1
-0
No files found.
tensnsorflow/feature_engineering.py
View file @
c6a363bc
...
...
@@ -63,19 +63,32 @@ def get_data():
test
=
df
[
df
[
"stat_date"
]
==
validate_date
+
"stat_date"
]
for
i
in
features
:
train
[
i
]
=
train
[
i
]
.
map
(
value_map
)
train
[
i
]
=
train
[
i
]
.
astype
(
'int64'
)
test
[
i
]
=
test
[
i
]
.
map
(
value_map
)
test
[
i
]
=
test
[
i
]
.
astype
(
'int64'
)
print
(
"train shape"
)
print
(
train
.
shape
)
print
(
"test shape"
)
print
(
test
.
shape
)
train
.
to_csv
(
path
+
"tr.csv"
,
index
=
False
)
test
.
to_csv
(
path
+
"va.csv"
,
index
=
False
)
write_csv
(
train
,
"tr"
,
100000
)
write_csv
(
test
,
"va"
,
80000
)
return
validate_date
,
value_map
def
write_csv
(
df
,
name
,
n
):
for
i
in
range
(
0
,
df
.
shape
[
0
],
n
):
if
i
==
0
:
temp
=
df
.
iloc
[
0
:
n
]
elif
i
+
n
>
df
.
shape
[
0
]:
temp
=
df
.
iloc
[
i
:]
else
:
temp
=
df
.
loc
[
i
:
i
+
n
]
temp
.
to_csv
(
path
+
name
+
"/{}{}.csv"
.
format
(
name
,
i
),
index
=
False
)
def
get_predict
(
date
,
value_map
):
db
=
pymysql
.
connect
(
host
=
'10.66.157.22'
,
port
=
4000
,
user
=
'root'
,
passwd
=
'3SYz54LS9#^9sBvC'
,
db
=
'jerry_test'
)
sql
=
"select e.y,e.z,e.label,e.ucity_id,e.clevel1_id,e.ccity_name,"
\
...
...
@@ -108,15 +121,21 @@ def get_predict(date,value_map):
for
i
in
features
:
native_pre
[
i
]
=
native_pre
[
i
]
.
map
(
value_map
)
# TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下
native_pre
[
i
]
=
native_pre
[
i
]
.
fillna
(
0
)
native_pre
[
i
]
=
native_pre
[
i
]
.
astype
(
'int64'
)
nearby_pre
[
i
]
=
nearby_pre
[
i
]
.
map
(
value_map
)
# TODO 没有覆盖到的类别会处理成na,暂时用0填充,后续完善一下
nearby_pre
[
i
]
=
nearby_pre
[
i
]
.
fillna
(
0
)
nearby_pre
[
i
]
=
nearby_pre
[
i
]
.
astype
(
'int64'
)
print
(
"native"
)
print
(
native_pre
.
shape
)
native_pre
.
to_csv
(
path
+
"native.csv"
,
index
=
False
)
write_csv
(
native_pre
,
"native"
,
200000
)
print
(
"nearby"
)
print
(
nearby_pre
.
shape
)
nearby_pre
.
to_csv
(
path
+
"nearby.csv"
,
index
=
False
)
write_csv
(
nearby_pre
,
"nearby"
,
160000
)
if
__name__
==
'__main__'
:
...
...
tensnsorflow/test.py
View file @
c6a363bc
...
...
@@ -33,7 +33,7 @@ def gen_tfrecords(in_file):
"y"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"y"
][
i
]])),
"z"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"z"
][
i
]])),
"top"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"top"
][
i
]])),
"channel"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"channel"
][
i
]])),
"channel"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"channel"
][
i
]])),
"ucity_id"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"ucity_id"
][
i
]])),
"clevel1_id"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"clevel1_id"
][
i
]])),
"ccity_name"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"ccity_name"
][
i
]])),
...
...
@@ -43,6 +43,7 @@ def gen_tfrecords(in_file):
"time"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"time"
][
i
]])),
"stat_date"
:
tf
.
train
.
Feature
(
int64_list
=
tf
.
train
.
Int64List
(
value
=
[
df
[
"stat_date"
][
i
]]))
})
example
=
tf
.
train
.
Example
(
features
=
tf
.
train
.
Features
(
feature
=
features
))
serialized
=
example
.
SerializeToString
()
tfrecord_out
.
write
(
serialized
)
...
...
tensnsorflow/train.py
View file @
c6a363bc
...
...
@@ -64,6 +64,7 @@ def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
"time"
:
tf
.
FixedLenFeature
([],
tf
.
int64
),
"stat_date"
:
tf
.
FixedLenFeature
([],
tf
.
int64
)
}
parsed
=
tf
.
parse_single_example
(
record
,
features
)
y
=
parsed
.
pop
(
'y'
)
z
=
parsed
.
pop
(
'z'
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment