Commit 3efa8a34 authored by 张彦钊's avatar 张彦钊

split file

parent c6a363bc
......@@ -26,7 +26,6 @@ def gen_tfrecords(in_file):
out_file = os.path.join(FLAGS.output_dir, basename)
tfrecord_out = tf.python_io.TFRecordWriter(out_file)
df = pd.read_csv(in_file)
print(df.head(2))
for i in range(df.shape[0]):
features = tf.train.Features(feature={
......
......@@ -109,13 +109,18 @@ def model_fn(features, labels, mode, params):
#------build feaure-------
#{U-A-X-C不需要特殊处理的特征}
feat_ids = features['feat_ids']
#feat_vals = features['feat_vals']
#{User multi-hot}
#{Ad}
#{X multi-hot}
#x_intids = features['x_intids']
#x_intvals = features['x_intvals']
ucity_id = features['ucity_id']
clevel1_id = features['clevel1_id']
ccity_name = features['ccity_name']
device_type = features['device_type']
manufacturer = features['manufacturer']
channel = features['channel']
top = features['top']
level2_ids = features['level2_ids']
time = features['time']
stat_date = features['stat_date']
if FLAGS.task_type != "infer":
y = labels['y']
......@@ -123,10 +128,20 @@ def model_fn(features, labels, mode, params):
#------build f(x)------
with tf.variable_scope("Shared-Embedding-layer"):
common_embs = tf.nn.embedding_lookup(Feat_Emb, feat_ids) # None * F' * K
#common_embs = tf.multiply(common_embs, feat_vals)
x_concat = tf.concat([tf.reshape(common_embs,shape=[-1, common_dims])],axis=1) # None * (F * K)
ucity_id = tf.nn.embedding_lookup(Feat_Emb, ucity_id)
clevel1_id = tf.nn.embedding_lookup(Feat_Emb, clevel1_id)
ccity_name = tf.nn.embedding_lookup(Feat_Emb, ccity_name)
device_type = tf.nn.embedding_lookup(Feat_Emb, device_type)
manufacturer = tf.nn.embedding_lookup(Feat_Emb, manufacturer)
channel = tf.nn.embedding_lookup(Feat_Emb, channel)
top = tf.nn.embedding_lookup(Feat_Emb, top)
level2_ids = tf.nn.embedding_lookup(Feat_Emb, level2_ids)
time = tf.nn.embedding_lookup(Feat_Emb, time)
stat_date = tf.nn.embedding_lookup(Feat_Emb, stat_date)
x_concat = tf.concat([ucity_id,clevel1_id,ccity_name,device_type,manufacturer,
channel,top,level2_ids,time,stat_date],axis=1) # None * (F * K)
with tf.name_scope("CVR_Task"):
if mode == tf.estimator.ModeKeys.TRAIN:
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment