Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
S
serviceRec
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
郭羽
serviceRec
Commits
e4eb4cc9
Commit
e4eb4cc9
authored
May 27, 2021
by
郭羽
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
美购精排模型
parent
d60b9499
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
22 additions
and
25 deletions
+22
-25
train.py
mlp/train.py
+22
-25
No files found.
mlp/train.py
View file @
e4eb4cc9
...
@@ -70,8 +70,9 @@ def getDataSet(df,shuffleSize = 10000,batchSize=128):
...
@@ -70,8 +70,9 @@ def getDataSet(df,shuffleSize = 10000,batchSize=128):
return
dataSet
return
dataSet
def
getTrainColumns
(
train_columns
,
data_vocab
):
def
getTrainColumns
(
train_columns
,
data_vocab
):
deep_columns
=
[]
emb_columns
=
[]
wide_columns
=
[]
number_columns
=
[]
oneHot_columns
=
[]
dataColumns
=
[]
dataColumns
=
[]
inputs
=
{}
inputs
=
{}
# 离散特征
# 离散特征
...
@@ -80,20 +81,20 @@ def getTrainColumns(train_columns,data_vocab):
...
@@ -80,20 +81,20 @@ def getTrainColumns(train_columns,data_vocab):
if
feature
.
count
(
"__"
)
>
0
:
if
feature
.
count
(
"__"
)
>
0
:
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
5
)
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
5
)
deep
_columns
.
append
(
col
)
emb
_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
elif
feature
in
one_hot_columns
or
feature
.
count
(
"Bucket"
)
>
0
:
elif
feature
in
one_hot_columns
or
feature
.
count
(
"Bucket"
)
>
0
:
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
# col = tf.feature_column.indicator_column(cat_col)
# col = tf.feature_column.indicator_column(cat_col)
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
3
)
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
3
)
wide
_columns
.
append
(
col
)
oneHot
_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
else
:
else
:
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
cat_col
=
tf
.
feature_column
.
categorical_column_with_vocabulary_list
(
key
=
feature
,
vocabulary_list
=
data_vocab
[
feature
])
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
10
)
col
=
tf
.
feature_column
.
embedding_column
(
cat_col
,
10
)
deep
_columns
.
append
(
col
)
emb
_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'string'
)
# if feature.startswith("userRatedHistory") or feature.count("__") > 0 or feature in embedding_columns:
# if feature.startswith("userRatedHistory") or feature.count("__") > 0 or feature in embedding_columns:
...
@@ -113,19 +114,17 @@ def getTrainColumns(train_columns,data_vocab):
...
@@ -113,19 +114,17 @@ def getTrainColumns(train_columns,data_vocab):
elif
feature
in
ITEM_NUMBER_COLUMNS
:
elif
feature
in
ITEM_NUMBER_COLUMNS
:
col
=
tf
.
feature_column
.
numeric_column
(
feature
)
col
=
tf
.
feature_column
.
numeric_column
(
feature
)
wide
_columns
.
append
(
col
)
number
_columns
.
append
(
col
)
dataColumns
.
append
(
feature
)
dataColumns
.
append
(
feature
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'float32'
)
inputs
[
feature
]
=
tf
.
keras
.
layers
.
Input
(
name
=
feature
,
shape
=
(),
dtype
=
'float32'
)
return
deep_columns
,
wide
_columns
,
dataColumns
,
inputs
return
emb_columns
,
number_columns
,
oneHot
_columns
,
dataColumns
,
inputs
def
train
(
deep_columns
,
wide_columns
,
inputs
,
train_dataset
):
def
train
(
emb_columns
,
number_columns
,
oneHot_columns
,
inputs
,
train_dataset
):
wide
=
tf
.
keras
.
layers
.
DenseFeatures
(
deep_columns
+
wide_columns
)(
inputs
)
wide
=
tf
.
keras
.
layers
.
DenseFeatures
(
emb_columns
+
number_columns
+
oneHot_columns
)(
inputs
)
deep
=
tf
.
keras
.
layers
.
DenseFeatures
(
deep_columns
)(
inputs
)
deep
=
tf
.
keras
.
layers
.
Dense
(
64
,
activation
=
'relu'
)(
wide
)
deep
=
tf
.
keras
.
layers
.
Dense
(
64
,
activation
=
'relu'
)(
deep
)
deep
=
tf
.
keras
.
layers
.
Dropout
(
0.2
)(
deep
)
deep
=
tf
.
keras
.
layers
.
Dropout
(
0.2
)(
deep
)
concat_layer
=
tf
.
keras
.
layers
.
concatenate
([
wide
,
deep
],
axis
=
1
)
concat_layer
=
tf
.
keras
.
layers
.
concatenate
([
wide
,
deep
],
axis
=
1
)
...
@@ -134,15 +133,13 @@ def train(deep_columns,wide_columns,inputs,train_dataset):
...
@@ -134,15 +133,13 @@ def train(deep_columns,wide_columns,inputs,train_dataset):
output_layer
=
tf
.
keras
.
layers
.
Dense
(
1
,
activation
=
'sigmoid'
)(
concat_layer
)
output_layer
=
tf
.
keras
.
layers
.
Dense
(
1
,
activation
=
'sigmoid'
)(
concat_layer
)
# output_layer = FM(1)(deep)
# output_layer = FM(1)(deep)
# deep = tf.keras.layers.DenseFeatures(columns)(inputs)
# deep = tf.keras.layers.Dense(64, activation='relu')(deep)
# deep = tf.keras.layers.Dropout(0.2)(deep)
# deep = tf.keras.layers.Dense(64, activation='relu')(deep)
# deep = tf.keras.layers.Dropout(0.2)(deep)
# output_layer = tf.keras.layers.Dense(1, activation='sigmoid')(deep)
model
=
tf
.
keras
.
Model
(
inputs
,
output_layer
)
model
=
tf
.
keras
.
Model
(
inputs
,
output_layer
)
# model = tf.keras.Sequential([
# tf.keras.layers.DenseFeatures(columns)(inputs),
# tf.keras.layers.Dense(128, activation='relu')(inputs),
# tf.keras.layers.Dense(128, activation='relu')(inputs),
# tf.keras.layers.Dense(1, activation='sigmoid'),
# ])
# compile the model, set loss function, optimizer and evaluation metrics
# compile the model, set loss function, optimizer and evaluation metrics
model
.
compile
(
model
.
compile
(
...
@@ -151,13 +148,13 @@ def train(deep_columns,wide_columns,inputs,train_dataset):
...
@@ -151,13 +148,13 @@ def train(deep_columns,wide_columns,inputs,train_dataset):
metrics
=
[
'accuracy'
,
tf
.
keras
.
metrics
.
AUC
(
curve
=
'ROC'
),
tf
.
keras
.
metrics
.
AUC
(
curve
=
'PR'
)])
metrics
=
[
'accuracy'
,
tf
.
keras
.
metrics
.
AUC
(
curve
=
'ROC'
),
tf
.
keras
.
metrics
.
AUC
(
curve
=
'PR'
)])
# train the model
# train the model
model
.
fit
(
train_dataset
,
epochs
=
10
)
print
(
"train start..."
)
model
.
fit
(
train_dataset
,
epochs
=
3
)
print
(
"train end..."
)
print
(
"train save..."
)
print
(
"train save..."
)
model
.
save
(
model_file
,
include_optimizer
=
False
,
save_format
=
'tf'
)
model
.
save
(
model_file
,
include_optimizer
=
False
,
save_format
=
'tf'
)
return
model
def
evaluate
(
model
,
test_dataset
):
def
evaluate
(
model
,
test_dataset
):
# evaluate the model
# evaluate the model
...
@@ -199,7 +196,7 @@ if __name__ == '__main__':
...
@@ -199,7 +196,7 @@ if __name__ == '__main__':
# 获取训练列
# 获取训练列
columns
=
df_train
.
columns
.
tolist
()
columns
=
df_train
.
columns
.
tolist
()
deep_columns
,
wide
_columns
,
datasColumns
,
inputs
=
getTrainColumns
(
columns
,
data_vocab
)
emb_columns
,
number_columns
,
oneHot
_columns
,
datasColumns
,
inputs
=
getTrainColumns
(
columns
,
data_vocab
)
df_train
=
df_train
[
datasColumns
+
[
"label"
]]
df_train
=
df_train
[
datasColumns
+
[
"label"
]]
df_test
=
df_test
[
datasColumns
+
[
"label"
]]
df_test
=
df_test
[
datasColumns
+
[
"label"
]]
...
@@ -219,7 +216,7 @@ if __name__ == '__main__':
...
@@ -219,7 +216,7 @@ if __name__ == '__main__':
print
(
"train start..."
)
print
(
"train start..."
)
timestmp3
=
int
(
round
(
time
.
time
()))
timestmp3
=
int
(
round
(
time
.
time
()))
model
=
train
(
deep_columns
,
wide
_columns
,
inputs
,
train_data
)
model
=
train
(
emb_columns
,
number_columns
,
oneHot
_columns
,
inputs
,
train_data
)
timestmp4
=
int
(
round
(
time
.
time
()))
timestmp4
=
int
(
round
(
time
.
time
()))
print
(
"train end...耗时h:{}"
.
format
((
timestmp4
-
timestmp3
)
/
60
/
60
))
print
(
"train end...耗时h:{}"
.
format
((
timestmp4
-
timestmp3
)
/
60
/
60
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment