Commit 2cd91288 authored by Davis King's avatar Davis King

removed cruft

parent e179f410
...@@ -226,10 +226,6 @@ namespace dlib ...@@ -226,10 +226,6 @@ namespace dlib
input_iterator ibegin, input_iterator ibegin,
input_iterator iend input_iterator iend
) )
/*!
ensures
- runs [ibegin,iend) through the network and returns the results
!*/
{ {
to_tensor(ibegin,iend,temp_tensor); to_tensor(ibegin,iend,temp_tensor);
return forward(temp_tensor); return forward(temp_tensor);
...@@ -237,10 +233,6 @@ namespace dlib ...@@ -237,10 +233,6 @@ namespace dlib
const tensor& operator() (const input_type& x) const tensor& operator() (const input_type& x)
/*!
ensures
- runs a single x through the network and returns the output.
!*/
{ {
return (*this)(&x, &x+1); return (*this)(&x, &x+1);
} }
...@@ -273,13 +265,6 @@ namespace dlib ...@@ -273,13 +265,6 @@ namespace dlib
template <typename solver_type> template <typename solver_type>
void update(const tensor& x, sstack<solver_type,num_layers>& solvers) void update(const tensor& x, sstack<solver_type,num_layers>& solvers)
/*!
requires
- forward(x) was called to forward propagate x though the network.
- x.num_samples() == get_gradient_input().num_samples()
- get_gradient_input() == the gradient of the network with respect
to some loss.
!*/
{ {
dimpl::subnet_wrapper<subnet_type> wsub(subnetwork); dimpl::subnet_wrapper<subnet_type> wsub(subnetwork);
params_grad.copy_size(details.get_layer_params()); params_grad.copy_size(details.get_layer_params());
...@@ -415,10 +400,6 @@ namespace dlib ...@@ -415,10 +400,6 @@ namespace dlib
input_iterator ibegin, input_iterator ibegin,
input_iterator iend input_iterator iend
) )
/*!
ensures
- runs [ibegin,iend) through the network and returns the results
!*/
{ {
to_tensor(ibegin,iend,temp_tensor); to_tensor(ibegin,iend,temp_tensor);
return forward(temp_tensor); return forward(temp_tensor);
...@@ -426,19 +407,11 @@ namespace dlib ...@@ -426,19 +407,11 @@ namespace dlib
const tensor& operator() (const input_type& x) const tensor& operator() (const input_type& x)
/*!
ensures
- runs a single x through the network and returns the output.
!*/
{ {
return (*this)(&x, &x+1); return (*this)(&x, &x+1);
} }
const tensor& forward (const tensor& x) const tensor& forward (const tensor& x)
/*!
requires
- x.num_samples() is a multiple of sample_expansion_factor.
!*/
{ {
DLIB_CASSERT(x.num_samples()%sample_expansion_factor == 0,""); DLIB_CASSERT(x.num_samples()%sample_expansion_factor == 0,"");
subnet_wrapper wsub(x, grad_final_ignored); subnet_wrapper wsub(x, grad_final_ignored);
...@@ -467,12 +440,6 @@ namespace dlib ...@@ -467,12 +440,6 @@ namespace dlib
template <typename solver_type> template <typename solver_type>
void update(const tensor& x, sstack<solver_type,num_layers>& solvers) void update(const tensor& x, sstack<solver_type,num_layers>& solvers)
/*!
requires
- x.num_samples() is a multiple of sample_expansion_factor.
- forward(x) was called to forward propagate x though the network.
- x.num_samples() == get_gradient_input().num_samples()
!*/
{ {
subnet_wrapper wsub(x, grad_final_ignored); subnet_wrapper wsub(x, grad_final_ignored);
params_grad.copy_size(details.get_layer_params()); params_grad.copy_size(details.get_layer_params());
...@@ -843,13 +810,6 @@ namespace dlib ...@@ -843,13 +810,6 @@ namespace dlib
input_iterator iend, input_iterator iend,
output_iterator obegin output_iterator obegin
) )
/*!
requires
- obegin == iterator pointing to the start of a range of distance(ibegin,iend)
elements.
ensures
- runs [ibegin,iend) through the network and writes the output to the range at obegin.
!*/
{ {
sub.to_tensor(ibegin,iend,temp_tensor); sub.to_tensor(ibegin,iend,temp_tensor);
sub.forward(temp_tensor); sub.forward(temp_tensor);
...@@ -858,10 +818,6 @@ namespace dlib ...@@ -858,10 +818,6 @@ namespace dlib
const label_type& operator() (const input_type& x) const label_type& operator() (const input_type& x)
/*!
ensures
- runs a single x through the network and returns the output.
!*/
{ {
(*this)(&x, &x+1, &temp_label); (*this)(&x, &x+1, &temp_label);
return temp_label; return temp_label;
...@@ -931,17 +887,6 @@ namespace dlib ...@@ -931,17 +887,6 @@ namespace dlib
void clean ( void clean (
) )
/*!
ensures
- Causes the network to forget about everything but its parameters.
That is, for each layer we will have:
- get_output().num_samples() == 0
- get_gradient_input().num_samples() == 0
However, running new input data though this network will still have the
same output it would have had regardless of any calls to clean().
Finally, the purpose of clean() is to compact the network object prior to
saving it to disk so that it takes up less space and the IO is quicker.
!*/
{ {
temp_tensor.clear(); temp_tensor.clear();
sub.clear(); sub.clear();
...@@ -1059,11 +1004,6 @@ namespace dlib ...@@ -1059,11 +1004,6 @@ namespace dlib
template <template<typename> class TAG_TYPE, typename SUBNET> template <template<typename> class TAG_TYPE, typename SUBNET>
class add_skip_layer class add_skip_layer
{ {
/*!
WHAT THIS OBJECT REPRESENTS
This object draws its inputs from layer<TAG_TYPE>(SUBNET())
and performs the identity transform.
!*/
public: public:
typedef SUBNET subnet_type; typedef SUBNET subnet_type;
typedef typename subnet_type::input_type input_type; typedef typename subnet_type::input_type input_type;
...@@ -1464,10 +1404,6 @@ namespace dlib ...@@ -1464,10 +1404,6 @@ namespace dlib
const std::vector<input_type>& data, const std::vector<input_type>& data,
const std::vector<label_type>& labels const std::vector<label_type>& labels
) )
/*!
requires
- data.size() == labels.size()
!*/
{ {
DLIB_CASSERT(data.size() == labels.size(), ""); DLIB_CASSERT(data.size() == labels.size(), "");
...@@ -1490,10 +1426,6 @@ namespace dlib ...@@ -1490,10 +1426,6 @@ namespace dlib
const net_type& train ( const net_type& train (
const std::vector<input_type>& data const std::vector<input_type>& data
) )
/*!
ensures
- trains an auto-encoder
!*/
{ {
const bool has_unsupervised_loss = std::is_same<no_label_type, label_type>::value; const bool has_unsupervised_loss = std::is_same<no_label_type, label_type>::value;
static_assert(has_unsupervised_loss, static_assert(has_unsupervised_loss,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment