Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
e179f410
Commit
e179f410
authored
Sep 28, 2015
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
clarified specs
parent
7f7ddcaa
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
23 additions
and
10 deletions
+23
-10
layers_abstract.h
dlib/dnn/layers_abstract.h
+9
-0
loss_abstract.h
dlib/dnn/loss_abstract.h
+10
-7
solvers_abstract.h
dlib/dnn/solvers_abstract.h
+4
-3
No files found.
dlib/dnn/layers_abstract.h
View file @
e179f410
...
...
@@ -274,6 +274,15 @@ namespace dlib
class
relu_
{
/*!
WHAT THIS OBJECT REPRESENTS
This is an implementation of the EXAMPLE_LAYER_ interface defined above.
In particular, it defines a rectified linear layer. Therefore, it passes
its inputs though the function f(x)=max(x,0) where f() is applied pointwise
across the input tensor.
!*/
public
:
relu_
(
...
...
dlib/dnn/loss_abstract.h
View file @
e179f410
...
...
@@ -23,7 +23,7 @@ namespace dlib
needs. You do this by creating a class that defines an interface matching
the one described by this EXAMPLE_LOSS_LAYER_ class. Note that there is no
dlib::EXAMPLE_LOSS_LAYER_ type. It is shown here purely to document the
interface that a loss layer
object
must implement.
interface that a loss layer must implement.
A loss layer can optionally provide a to_label() method that converts the
output of a network into a user defined type. If to_label() is not
...
...
@@ -56,7 +56,7 @@ namespace dlib
requires
- SUBNET implements the SUBNET interface defined at the top of
layers_abstract.h.
- sub.get_output().num_samples()%sample_expansion_factor == 0
- sub.get_output().num_samples()%sample_expansion_factor == 0
.
- All outputs in each layer of sub have the same number of samples. That
is, for all valid i:
- sub.get_output().num_samples() == layer<i>(sub).get_output().num_samples()
...
...
@@ -67,7 +67,7 @@ namespace dlib
- Converts the output of the provided network to label_type objects and
stores the results into the range indicated by iter. In particular, for
all valid i and j, it will be the case that:
*(
truth
+i/sample_expansion_factor) is the output corresponding to the
*(
iter
+i/sample_expansion_factor) is the output corresponding to the
ith sample in layer<j>(sub).get_output().
!*/
...
...
@@ -90,7 +90,8 @@ namespace dlib
- input_tensor.num_samples()%sample_expansion_factor == 0.
- for all valid i:
- layer<i>(sub).get_output().num_samples() == input_tensor.num_samples().
- layer<i>(sub).get_gradient_input() has the same dimensions as layer<i>(sub).get_output().
- layer<i>(sub).get_gradient_input() has the same dimensions as
layer<i>(sub).get_output().
- truth == an iterator pointing to the beginning of a range of
input_tensor.num_samples()/sample_expansion_factor elements. In
particular, they must be label_type elements.
...
...
@@ -98,7 +99,7 @@ namespace dlib
- *(truth+i/sample_expansion_factor) is the label of the ith sample in
layer<j>(sub).get_output().
ensures
- This function computes
the
loss function that describes how well the output
- This function computes
a
loss function that describes how well the output
of sub matches the expected labels given by truth. Let's write the loss
function as L(input_tensor, truth, sub).
- Then compute_loss() computes the gradient of L() with respect to the
...
...
@@ -125,8 +126,10 @@ namespace dlib
{
/*!
WHAT THIS OBJECT REPRESENTS
You use this loss to perform binary classification with the hinge loss.
Therefore, the possible outputs/labels when using this loss are +1 and -1.
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, you use this loss to perform binary
classification with the hinge loss. Therefore, the possible outputs/labels
when using this loss are +1 and -1.
!*/
public
:
...
...
dlib/dnn/solvers_abstract.h
View file @
e179f410
...
...
@@ -25,7 +25,7 @@ namespace dlib
apply it to its update rule.
Note that there is no dlib::EXAMPLE_SOLVER type. It is shown here purely
to document the interface
that
a solver object must implement.
to document the interface a solver object must implement.
!*/
public
:
...
...
@@ -40,9 +40,10 @@ namespace dlib
);
/*!
requires
- LAYER_DETAILS implements the EXAMPLE_LAYER_ interface defined in layers_abstract.h.
- LAYER_DETAILS implements the EXAMPLE_LAYER_ interface defined in
layers_abstract.h.
- l.get_layer_params().size() != 0
-
l.get_layer_params() and params_grad have the same dimensions
.
-
have_same_dimensions(l.get_layer_params(), params_grad) == true
.
- When this function is invoked on a particular solver instance, it is
always supplied with the same LAYER_DETAILS object.
ensures
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment