Commit e179f410 authored by Davis King's avatar Davis King

clarified specs

parent 7f7ddcaa
...@@ -274,6 +274,15 @@ namespace dlib ...@@ -274,6 +274,15 @@ namespace dlib
class relu_ class relu_
{ {
/*!
WHAT THIS OBJECT REPRESENTS
This is an implementation of the EXAMPLE_LAYER_ interface defined above.
In particular, it defines a rectified linear layer. Therefore, it passes
its inputs though the function f(x)=max(x,0) where f() is applied pointwise
across the input tensor.
!*/
public: public:
relu_( relu_(
......
...@@ -23,7 +23,7 @@ namespace dlib ...@@ -23,7 +23,7 @@ namespace dlib
needs. You do this by creating a class that defines an interface matching needs. You do this by creating a class that defines an interface matching
the one described by this EXAMPLE_LOSS_LAYER_ class. Note that there is no the one described by this EXAMPLE_LOSS_LAYER_ class. Note that there is no
dlib::EXAMPLE_LOSS_LAYER_ type. It is shown here purely to document the dlib::EXAMPLE_LOSS_LAYER_ type. It is shown here purely to document the
interface that a loss layer object must implement. interface that a loss layer must implement.
A loss layer can optionally provide a to_label() method that converts the A loss layer can optionally provide a to_label() method that converts the
output of a network into a user defined type. If to_label() is not output of a network into a user defined type. If to_label() is not
...@@ -56,7 +56,7 @@ namespace dlib ...@@ -56,7 +56,7 @@ namespace dlib
requires requires
- SUBNET implements the SUBNET interface defined at the top of - SUBNET implements the SUBNET interface defined at the top of
layers_abstract.h. layers_abstract.h.
- sub.get_output().num_samples()%sample_expansion_factor == 0 - sub.get_output().num_samples()%sample_expansion_factor == 0.
- All outputs in each layer of sub have the same number of samples. That - All outputs in each layer of sub have the same number of samples. That
is, for all valid i: is, for all valid i:
- sub.get_output().num_samples() == layer<i>(sub).get_output().num_samples() - sub.get_output().num_samples() == layer<i>(sub).get_output().num_samples()
...@@ -67,7 +67,7 @@ namespace dlib ...@@ -67,7 +67,7 @@ namespace dlib
- Converts the output of the provided network to label_type objects and - Converts the output of the provided network to label_type objects and
stores the results into the range indicated by iter. In particular, for stores the results into the range indicated by iter. In particular, for
all valid i and j, it will be the case that: all valid i and j, it will be the case that:
*(truth+i/sample_expansion_factor) is the output corresponding to the *(iter+i/sample_expansion_factor) is the output corresponding to the
ith sample in layer<j>(sub).get_output(). ith sample in layer<j>(sub).get_output().
!*/ !*/
...@@ -90,7 +90,8 @@ namespace dlib ...@@ -90,7 +90,8 @@ namespace dlib
- input_tensor.num_samples()%sample_expansion_factor == 0. - input_tensor.num_samples()%sample_expansion_factor == 0.
- for all valid i: - for all valid i:
- layer<i>(sub).get_output().num_samples() == input_tensor.num_samples(). - layer<i>(sub).get_output().num_samples() == input_tensor.num_samples().
- layer<i>(sub).get_gradient_input() has the same dimensions as layer<i>(sub).get_output(). - layer<i>(sub).get_gradient_input() has the same dimensions as
layer<i>(sub).get_output().
- truth == an iterator pointing to the beginning of a range of - truth == an iterator pointing to the beginning of a range of
input_tensor.num_samples()/sample_expansion_factor elements. In input_tensor.num_samples()/sample_expansion_factor elements. In
particular, they must be label_type elements. particular, they must be label_type elements.
...@@ -98,7 +99,7 @@ namespace dlib ...@@ -98,7 +99,7 @@ namespace dlib
- *(truth+i/sample_expansion_factor) is the label of the ith sample in - *(truth+i/sample_expansion_factor) is the label of the ith sample in
layer<j>(sub).get_output(). layer<j>(sub).get_output().
ensures ensures
- This function computes the loss function that describes how well the output - This function computes a loss function that describes how well the output
of sub matches the expected labels given by truth. Let's write the loss of sub matches the expected labels given by truth. Let's write the loss
function as L(input_tensor, truth, sub). function as L(input_tensor, truth, sub).
- Then compute_loss() computes the gradient of L() with respect to the - Then compute_loss() computes the gradient of L() with respect to the
...@@ -125,8 +126,10 @@ namespace dlib ...@@ -125,8 +126,10 @@ namespace dlib
{ {
/*! /*!
WHAT THIS OBJECT REPRESENTS WHAT THIS OBJECT REPRESENTS
You use this loss to perform binary classification with the hinge loss. This object implements the loss layer interface defined above by
Therefore, the possible outputs/labels when using this loss are +1 and -1. EXAMPLE_LOSS_LAYER_. In particular, you use this loss to perform binary
classification with the hinge loss. Therefore, the possible outputs/labels
when using this loss are +1 and -1.
!*/ !*/
public: public:
......
...@@ -25,7 +25,7 @@ namespace dlib ...@@ -25,7 +25,7 @@ namespace dlib
apply it to its update rule. apply it to its update rule.
Note that there is no dlib::EXAMPLE_SOLVER type. It is shown here purely Note that there is no dlib::EXAMPLE_SOLVER type. It is shown here purely
to document the interface that a solver object must implement. to document the interface a solver object must implement.
!*/ !*/
public: public:
...@@ -40,9 +40,10 @@ namespace dlib ...@@ -40,9 +40,10 @@ namespace dlib
); );
/*! /*!
requires requires
- LAYER_DETAILS implements the EXAMPLE_LAYER_ interface defined in layers_abstract.h. - LAYER_DETAILS implements the EXAMPLE_LAYER_ interface defined in
layers_abstract.h.
- l.get_layer_params().size() != 0 - l.get_layer_params().size() != 0
- l.get_layer_params() and params_grad have the same dimensions. - have_same_dimensions(l.get_layer_params(), params_grad) == true.
- When this function is invoked on a particular solver instance, it is - When this function is invoked on a particular solver instance, it is
always supplied with the same LAYER_DETAILS object. always supplied with the same LAYER_DETAILS object.
ensures ensures
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment