Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
546bdf51
Commit
546bdf51
authored
Jan 26, 2018
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Switched 2D kernels to use the new 2D launch_kernel(). Also added overload of
dot_prods() that can accumulate in addition to assign.
parent
19b16e1a
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
113 additions
and
12 deletions
+113
-12
cuda_dlib.cu
dlib/dnn/cuda_dlib.cu
+53
-12
cuda_dlib.h
dlib/dnn/cuda_dlib.h
+7
-0
tensor_tools.cpp
dlib/dnn/tensor_tools.cpp
+17
-0
tensor_tools.h
dlib/dnn/tensor_tools.h
+18
-0
dnn.cpp
dlib/test/dnn.cpp
+18
-0
No files found.
dlib/dnn/cuda_dlib.cu
View file @
546bdf51
...
...
@@ -142,9 +142,8 @@ namespace dlib
)
{
invnorms.set_size(data.num_samples());
dim3 blocks(1,10); // x size 1 so we don't need to worry about inter-block synchronization (since only y spans blocks)
dim3 threads(32,32); // x size must be 32 because we are using warp_reduce_atomic_add() in the kernel.
_cuda_inverse_norms<<<blocks,threads>>>(invnorms.device(), data.device(), data.num_samples(), data.size()/data.num_samples(), eps);
launch_kernel(_cuda_inverse_norms, max_jobs(data.size()/data.num_samples(), data.num_samples()),
invnorms.device(), data.device(), data.num_samples(), data.size()/data.num_samples(), eps);
}
// ----------------------------------------------------------------------------------------
...
...
@@ -170,16 +169,57 @@ namespace dlib
}
}
__global__ void _cuda_dot_prods_add_to(float* out, const float* lhs, const float* rhs, size_t nr, size_t nc)
{
for (auto i : grid_stride_range_y(0, nr))
{
auto l = lhs + i*nc;
auto r = rhs + i*nc;
float temp = 0;
for (auto j : grid_stride_range(0, nc))
temp += l[j]*r[j];
// and store the sum into out[i]
warp_reduce_atomic_add(out[i], temp);
}
}
void dot_prods (
resizable_tensor& out,
const tensor& lhs,
const tensor& rhs
)
{
DLIB_CASSERT(have_same_dimensions(lhs,rhs));
out.set_size(lhs.num_samples());
dim3 blocks(1,10); // x size 1 so we don't need to worry about inter-block synchronization (since only y spans blocks)
dim3 threads(32,32); // x size must be 32 because we are using warp_reduce_atomic_add() in the kernel.
_cuda_dot_prods<<<blocks,threads>>>(out.device(), lhs.device(), rhs.device(), lhs.num_samples(), lhs.size()/lhs.num_samples());
if (out.size() == 0)
return;
const auto nr = lhs.num_samples();
const auto nc = lhs.size()/lhs.num_samples();
launch_kernel(_cuda_dot_prods, max_jobs(nc,nr), out.device_write_only(), lhs.device(), rhs.device(), nr, nc);
}
void dot_prods (
bool add_to,
tensor& out,
const tensor& lhs,
const tensor& rhs
)
{
DLIB_CASSERT(have_same_dimensions(lhs,rhs));
DLIB_CASSERT(out.k() == 1 && out.nr() == 1 && out.nc() == 1);
DLIB_CASSERT(out.size() == lhs.num_samples());
const auto nr = lhs.num_samples();
const auto nc = lhs.size()/lhs.num_samples();
if (add_to)
launch_kernel(_cuda_dot_prods_add_to, max_jobs(nc,nr), out.device(), lhs.device(), rhs.device(), nr, nc);
else
launch_kernel(_cuda_dot_prods, max_jobs(nc,nr), out.device_write_only(), lhs.device(), rhs.device(), nr, nc);
}
// ----------------------------------------------------------------------------------------
...
...
@@ -501,14 +541,15 @@ namespace dlib
if (dest.size() == 0)
return;
dim3 blocks(1,10); // x size 1 so we don't need to worry about inter-block synchronization (since only y spans blocks)
dim3 threads(32,32); // x size must be 32 because we are using warp_reduce_atomic_add() in the kernel.
const auto bs = src1.nr()*src1.nc();
const auto n = src1.num_samples()*src1.k();
if (add_to)
_cuda_multiply_conv2_add_to<<<blocks,threads>>>(
dest.device(), src1.device(),
src1.num_samples()*src1.k(), src2.device(), src1.nr()*src1.nc()
, src1.k());
launch_kernel(_cuda_multiply_conv2_add_to, max_jobs(bs,n),
dest.device(), src1.device(),
n, src2.device(), bs
, src1.k());
else
_cuda_multiply_conv2<<<blocks,threads>>>(
dest.device(), src1.device(),
src1.num_samples()*src1.k(), src2.device(), src1.nr()*src1.nc()
, src1.k());
launch_kernel(_cuda_multiply_conv2, max_jobs(bs,n),
dest.device(), src1.device(),
n, src2.device(), bs
, src1.k());
}
}
...
...
dlib/dnn/cuda_dlib.h
View file @
546bdf51
...
...
@@ -121,6 +121,13 @@ namespace dlib
const
tensor
&
rhs
);
void
dot_prods
(
bool
add_to
,
tensor
&
out
,
const
tensor
&
lhs
,
const
tensor
&
rhs
);
void
scale_columns
(
tensor
&
out
,
const
tensor
&
m
,
...
...
dlib/dnn/tensor_tools.cpp
View file @
546bdf51
...
...
@@ -69,6 +69,23 @@ namespace dlib { namespace tt
#endif
}
void
dot_prods
(
bool
add_to
,
tensor
&
out
,
const
tensor
&
lhs
,
const
tensor
&
rhs
)
{
#ifdef DLIB_USE_CUDA
cuda
::
dot_prods
(
add_to
,
out
,
lhs
,
rhs
);
#else
if
(
add_to
)
out
+=
sum_cols
(
pointwise_multiply
(
mat
(
lhs
),
mat
(
rhs
)));
else
out
=
sum_cols
(
pointwise_multiply
(
mat
(
lhs
),
mat
(
rhs
)));
#endif
}
void
scale_columns
(
tensor
&
out
,
const
tensor
&
m
,
...
...
dlib/dnn/tensor_tools.h
View file @
546bdf51
...
...
@@ -50,6 +50,24 @@ namespace dlib { namespace tt
- #out == sum_cols(pointwise_multiply(mat(lhs), mat(rhs)));
!*/
void
dot_prods
(
bool
add_to
,
tensor
&
out
,
const
tensor
&
lhs
,
const
tensor
&
rhs
);
/*!
requires
- have_same_dimensions(lhs,rhs) == true
- out.size() == lhs.num_samples()
- out.k() == out.nr() == out.nc() == 1
ensures
- if (add_to) then
- #out == mat(out) + sum_cols(pointwise_multiply(mat(lhs), mat(rhs)));
- else
- #out == sum_cols(pointwise_multiply(mat(lhs), mat(rhs)));
!*/
void
scale_columns
(
tensor
&
out
,
const
tensor
&
m
,
...
...
dlib/test/dnn.cpp
View file @
546bdf51
...
...
@@ -1256,6 +1256,24 @@ namespace
out2
=
scale_rows
(
mat
(
data
),
mat
(
invnorms1
));
DLIB_TEST
(
max
(
abs
(
mat
(
out1
)
-
mat
(
out2
)))
<
1e-6
);
}
{
resizable_tensor
a
(
123
,
432
),
b
(
123
,
432
);
rnd
.
fill_gaussian
(
a
);
rnd
.
fill_gaussian
(
b
);
resizable_tensor
out
;
dot_prods
(
out
,
a
,
b
);
const
matrix
<
float
>
truth
=
sum_cols
(
pointwise_multiply
(
mat
(
a
),
mat
(
b
)));
DLIB_TEST
(
max
(
abs
(
mat
(
out
)
-
truth
))
<
1e-4
);
out
=
0
;
DLIB_TEST
(
max
(
abs
(
mat
(
out
)
-
truth
))
>
1e-2
);
dot_prods
(
false
,
out
,
a
,
b
);
DLIB_TEST
(
max
(
abs
(
mat
(
out
)
-
truth
))
<
1e-4
);
dot_prods
(
true
,
out
,
a
,
b
);
DLIB_TEST
(
max
(
abs
(
mat
(
out
)
/
2
-
truth
))
<
1e-4
);
DLIB_TEST
(
max
(
abs
(
mat
(
out
)
-
truth
))
>
1e-2
);
}
}
// ----------------------------------------------------------------------------------------
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment