Commit 740f5753 authored by Davis King's avatar Davis King

Removing mltool since I'm pretty sure no one uses it and it might even cause

user confusion.
parent b16d30ce
...@@ -2,4 +2,3 @@ cmake_minimum_required(VERSION 2.8.4) ...@@ -2,4 +2,3 @@ cmake_minimum_required(VERSION 2.8.4)
add_subdirectory(../../../tools/imglab imglab_build) add_subdirectory(../../../tools/imglab imglab_build)
add_subdirectory(../../../tools/htmlify htmlify_build) add_subdirectory(../../../tools/htmlify htmlify_build)
add_subdirectory(../../../tools/mltool mltool_build)
#
# This is a CMake makefile. You can find the cmake utility and
# information about it at http://www.cmake.org
#
cmake_minimum_required(VERSION 2.8.4)
# create a variable called target_name and set it to the string "mltool"
set (target_name mltool)
PROJECT(${target_name})
# add all the cpp files we want to compile to this list. This tells
# cmake that they are part of our target (which is the executable named mltool)
ADD_EXECUTABLE(${target_name}
src/main.cpp
src/regression.cpp
src/regression.h
src/common.h
src/option_range.h
src/option_range.cpp
)
# Tell cmake to link our target executable to dlib.
include(../../dlib/cmake)
TARGET_LINK_LIBRARIES(${target_name} dlib )
INSTALL(TARGETS ${target_name}
RUNTIME DESTINATION bin
)
// The contents of this file are in the public domain.
// See LICENSE_FOR_EXAMPLE_PROGRAMS.txt (in trunk/examples)
// Authors:
// Gregory Sharp
// Davis King
#ifndef DLIB_MLTOOL_COMMoN_H__
#include "dlib/cmd_line_parser.h"
#include <map>
#include "dlib/matrix.h"
using dlib::command_line_parser;
typedef std::map<unsigned long, double> sparse_sample_type;
typedef dlib::matrix<sparse_sample_type::value_type::second_type,0,1> dense_sample_type;
#endif // DLIB_MLTOOL_COMMoN_H__
// The contents of this file are in the public domain.
// See LICENSE_FOR_EXAMPLE_PROGRAMS.txt (in trunk/examples)
// Authors:
// Gregory Sharp
// Davis King
/*
This is a command line program that can try different regression
algorithms on a libsvm-formatted data set.
*/
#include "regression.h"
#include <iostream>
#include <map>
#include <vector>
#include "dlib/cmd_line_parser.h"
#include "dlib/data_io.h"
#include "dlib/svm.h"
using namespace dlib;
// ----------------------------------------------------------------------------------------
static void
parse_args (command_line_parser& parser, int argc, char* argv[])
{
try {
// Algorithm-independent options
parser.add_option ("a",
"Choose the learning algorithm: {krls,krr,mlp,svr}.",1);
parser.add_option ("h","Display this help message.");
parser.add_option ("help","Display this help message.");
parser.add_option ("k",
"Learning kernel (for krls,krr,svr methods): {lin,rbk}.",1);
parser.add_option ("in","A libsvm-formatted file to test.",1);
parser.add_option ("normalize",
"Normalize the sample inputs to zero-mean unit variance.");
parser.add_option ("train-best",
"Train and save a network using best parameters", 1);
parser.set_group_name("Algorithm Specific Options");
// Algorithm-specific options
parser.add_option ("rbk-gamma",
"Width of radial basis kernels: {float}.",1);
parser.add_option ("krls-tolerance",
"Numerical tolerance of krls linear dependency test: {float}.",1);
parser.add_option ("mlp-hidden-units",
"Number of hidden units in mlp: {integer}.",1);
parser.add_option ("mlp-num-iterations",
"Number of epochs to train the mlp: {integer}.",1);
parser.add_option ("svr-c",
"SVR regularization parameter \"C\": "
"{float}.",1);
parser.add_option ("svr-epsilon-insensitivity",
"SVR fitting tolerance parameter: "
"{float}.",1);
parser.add_option ("verbose", "Use verbose trainers");
// Parse the command line arguments
parser.parse(argc,argv);
// Check that options aren't given multiple times
const char* one_time_opts[] = {"a", "h", "help", "in"};
parser.check_one_time_options(one_time_opts);
const char* valid_kernels[] = {"lin", "rbk"};
const char* valid_algs[] = {"krls", "krr", "mlp", "svr"};
parser.check_option_arg_range("a", valid_algs);
parser.check_option_arg_range("k", valid_kernels);
parser.check_option_arg_range("rbk-gamma", 1e-200, 1e200);
parser.check_option_arg_range("krls-tolerance", 1e-200, 1e200);
parser.check_option_arg_range("mlp-hidden-units", 1, 10000000);
parser.check_option_arg_range("mlp-num-iterations", 1, 10000000);
parser.check_option_arg_range("svr-c", 1e-200, 1e200);
parser.check_option_arg_range("svr-epsilon-insensitivity", 1e-200, 1e200);
// Check if the -h option was given
if (parser.option("h") || parser.option("help")) {
std::cout << "Usage: mltool [-a algorithm] --in input_file\n";
parser.print_options(std::cout);
std::cout << std::endl;
exit (0);
}
// Check that an input file was given
if (!parser.option("in")) {
std::cout
<< "Error in command line:\n"
<< "You must specify an input file with the --in option.\n"
<< "\nTry the -h option for more information\n";
exit (0);
}
}
catch (std::exception& e) {
// Catch cmd_line_parse_error exceptions and print usage message.
std::cout << e.what() << std::endl;
exit (1);
}
catch (...) {
std::cout << "Some error occurred" << std::endl;
}
}
// ----------------------------------------------------------------------------------------
int
main (int argc, char* argv[])
{
command_line_parser parser;
parse_args(parser, argc, argv);
std::vector<sparse_sample_type> sparse_samples;
std::vector<double> labels;
load_libsvm_formatted_data (
parser.option("in").argument(),
sparse_samples,
labels
);
if (sparse_samples.size() < 1) {
std::cout
<< "Sorry, I couldn't find any samples in your data set.\n"
<< "Aborting the operation.\n";
exit (0);
}
std::vector<dense_sample_type> dense_samples;
dense_samples = sparse_to_dense (sparse_samples);
/* GCS FIX: The sparse_to_dense converter adds an extra column,
because libsvm files are indexed starting with "1". */
std::cout
<< "Loaded " << sparse_samples.size() << " samples"
<< std::endl
<< "Each sample has size " << sparse_samples[0].size()
<< std::endl
<< "Each dense sample has size " << dense_samples[0].size()
<< std::endl;
// Normalize inputs to N(0,1)
if (parser.option ("normalize")) {
vector_normalizer<dense_sample_type> normalizer;
normalizer.train (dense_samples);
for (unsigned long i = 0; i < dense_samples.size(); ++i) {
dense_samples[i] = normalizer (dense_samples[i]);
}
}
// Randomize the order of the samples, labels
randomize_samples (dense_samples, labels);
const command_line_parser::option_type& option_alg = parser.option("a");
if (!option_alg) {
// Do KRR if user didn't specify an algorithm
std::cout << "No algorithm specified, default to KRR\n";
krr_test (parser, dense_samples, labels);
}
else if (option_alg.argument() == "krls") {
krls_test (parser, dense_samples, labels);
}
else if (option_alg.argument() == "krr") {
krr_test (parser, dense_samples, labels);
}
else if (option_alg.argument() == "mlp") {
mlp_test (parser, dense_samples, labels);
}
else if (option_alg.argument() == "svr") {
svr_test (parser, dense_samples, labels);
}
else {
fprintf (stderr,
"Error, algorithm \"%s\" is unknown.\n"
"Please use -h to see the command line options\n",
option_alg.argument().c_str());
exit (-1);
}
}
// ----------------------------------------------------------------------------------------
// The contents of this file are in the public domain.
// See LICENSE_FOR_EXAMPLE_PROGRAMS.txt (in trunk/examples)
// Authors:
// Gregory Sharp
// Davis King
#include "option_range.h"
#include <iostream>
// ----------------------------------------------------------------------------------------
/* exp10() is not in C/C++ standard */
double
exp10_ (double m)
{
return exp (2.3025850929940456840179914546844 * m);
}
// ----------------------------------------------------------------------------------------
void
option_range::set_option (
command_line_parser& parser,
std::string const& option,
float default_val
)
{
int rc;
/* No option specified */
if (!parser.option (option)) {
log_range = 0;
min_value = default_val;
max_value = default_val;
incr = 1;
return;
}
/* Range specified */
rc = sscanf (parser.option(option).argument().c_str(), "%f:%f:%f",
&min_value, &incr, &max_value);
if (rc == 3) {
log_range = 1;
return;
}
/* Single value specified */
if (rc == 1) {
log_range = 0;
max_value = min_value;
incr = 1;
return;
}
else {
std::cerr << "Error parsing option" << option << "\n";
exit (-1);
}
}
// ----------------------------------------------------------------------------------------
float
option_range::get_min_value ()
{
if (log_range) {
return exp10_ (min_value);
} else {
return min_value;
}
}
// ----------------------------------------------------------------------------------------
float
option_range::get_max_value ()
{
if (log_range) {
return exp10_ (max_value);
} else {
return max_value;
}
}
// ----------------------------------------------------------------------------------------
float
option_range::get_next_value (float curr_value)
{
if (log_range) {
curr_value = log10 (curr_value);
curr_value += incr;
curr_value = exp10_ (curr_value);
} else {
curr_value += incr;
}
return curr_value;
}
// ----------------------------------------------------------------------------------------
// The contents of this file are in the public domain.
// See LICENSE_FOR_EXAMPLE_PROGRAMS.txt (in trunk/examples)
// Authors:
// Gregory Sharp
// Davis King
#ifndef DLIB_MLTOOL_OPTION_RaNGE_H__
#define DLIB_MLTOOL_OPTION_RaNGE_H__
#include "common.h"
#include <string>
// ----------------------------------------------------------------------------------------
struct option_range
{
/*!
WHAT THIS OBJECT REPRESENTS
This object is a tool for representing a range of possible parameter values.
The range is determined based on the contents of the command line.
!*/
public:
bool log_range;
float min_value;
float max_value;
float incr;
public:
option_range () {
log_range = false;
min_value = 0;
max_value = 100;
incr = 10;
}
void set_option (command_line_parser& parser, std::string const& option,
float default_val);
float get_min_value ();
float get_max_value ();
float get_next_value (float curr_val);
};
// ----------------------------------------------------------------------------------------
#endif // DLIB_MLTOOL_OPTION_RaNGE_H__
This diff is collapsed.
// The contents of this file are in the public domain.
// See LICENSE_FOR_EXAMPLE_PROGRAMS.txt (in trunk/examples)
// Authors:
// Gregory Sharp
// Davis King
#ifndef DLIB_MLTOOL_REGREsSION_H__
#define DLIB_MLTOOL_REGREsSION_H__
#include "common.h"
#include <vector>
void
krr_test (
command_line_parser& parser,
std::vector<dense_sample_type>& dense_samples,
std::vector<double>& labels
);
void
krls_test (
command_line_parser& parser,
std::vector<dense_sample_type>& dense_samples,
std::vector<double>& labels
);
void
mlp_test (
command_line_parser& parser,
std::vector<dense_sample_type>& dense_samples,
std::vector<double>& labels
);
void
svr_test (
command_line_parser& parser,
std::vector<dense_sample_type>& dense_samples,
std::vector<double>& labels
);
#endif // DLIB_MLTOOL_REGREsSION_H__
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment