Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
7e39a527
Commit
7e39a527
authored
Nov 18, 2017
by
Davis King
Browse files
Options
Browse Files
Download
Plain Diff
merged
parents
f1fe908a
f093d2cc
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
23 additions
and
11 deletions
+23
-11
upper_bound_function.h
dlib/global_optimization/upper_bound_function.h
+23
-11
No files found.
dlib/global_optimization/upper_bound_function.h
View file @
7e39a527
...
...
@@ -54,17 +54,31 @@ namespace dlib
std
::
vector
<
sample_type
>
x
;
std
::
vector
<
double
>
y
;
// normalize the data so the values aren't extreme
std
::
vector
<
matrix
<
double
,
0
,
1
>>
temp
;
// We are going to normalize the data so the values aren't extreme. First, we
// collect statistics on our data.
std
::
vector
<
running_stats
<
double
>>
x_rs
(
dims
);
running_stats
<
double
>
y_rs
;
for
(
auto
&
v
:
points
)
temp
.
push_back
(
v
.
x
);
xnormalizer
.
train
(
temp
);
for
(
auto
&
v
:
points
)
v
.
x
=
xnormalizer
(
v
.
x
);
{
for
(
long
i
=
0
;
i
<
v
.
x
.
size
();
++
i
)
x_rs
[
i
].
add
(
v
.
x
(
i
));
y_rs
.
add
(
v
.
y
);
}
x
.
reserve
(
points
.
size
()
*
(
points
.
size
()
-
1
)
/
2
);
y
.
reserve
(
points
.
size
()
*
(
points
.
size
()
-
1
)
/
2
);
// compute normalization vectors for the data. The only reason we do this is
// to make the optimization well conditioned. In particular, scaling the y
// values will prevent numerical errors in the 1-diff*diff computation below that
// would otherwise result when diff is really big. Also, scaling the xvalues
// to be about 1 will similarly make the optimization more stable and it also
// has the added benefit of keeping the relative_noise_magnitude's scale
// constant regardless of the size of x values.
const
double
yscale
=
1
.
0
/
y_rs
.
stddev
();
std
::
vector
<
double
>
xscale
(
dims
);
for
(
size_t
i
=
0
;
i
<
xscale
.
size
();
++
i
)
xscale
[
i
]
=
1
.
0
/
(
x_rs
[
i
].
stddev
()
*
yscale
);
// make it so that xscale[i]*yscale == 1/x_rs[i].stddev()
sample_type
samp
;
...
...
@@ -75,7 +89,7 @@ namespace dlib
samp
.
clear
();
for
(
long
k
=
0
;
k
<
dims
;
++
k
)
{
double
temp
=
points
[
i
].
x
(
k
)
-
points
[
j
].
x
(
k
)
;
double
temp
=
(
points
[
i
].
x
(
k
)
-
points
[
j
].
x
(
k
))
*
xscale
[
k
]
*
yscale
;
samp
.
push_back
(
std
::
make_pair
(
k
,
temp
*
temp
));
}
...
...
@@ -84,7 +98,7 @@ namespace dlib
else
samp
.
push_back
(
std
::
make_pair
(
dims
+
i
,
relative_noise_magnitude
));
double
diff
=
points
[
i
].
y
-
points
[
j
].
y
;
const
double
diff
=
(
points
[
i
].
y
-
points
[
j
].
y
)
*
yscale
;
samp
.
push_back
(
std
::
make_pair
(
dims
+
points
.
size
(),
1
-
diff
*
diff
));
x
.
push_back
(
samp
);
...
...
@@ -104,7 +118,7 @@ namespace dlib
const
auto
&
bv
=
df
.
basis_vectors
(
0
);
slopes
.
set_size
(
dims
);
for
(
long
i
=
0
;
i
<
dims
;
++
i
)
slopes
(
i
)
=
bv
[
i
].
second
;
slopes
(
i
)
=
bv
[
i
].
second
*
xscale
[
i
]
*
xscale
[
i
]
;
//cout << "slopes:" << trans(slopes);
...
...
@@ -162,7 +176,6 @@ namespace dlib
DLIB_CASSERT
(
x
.
size
()
==
dimensionality
());
x
=
xnormalizer
(
x
);
double
upper_bound
=
std
::
numeric_limits
<
double
>::
infinity
();
...
...
@@ -177,7 +190,6 @@ namespace dlib
private
:
vector_normalizer
<
matrix
<
double
,
0
,
1
>>
xnormalizer
;
std
::
vector
<
function_evaluation
>
points
;
std
::
vector
<
double
>
offsets
;
// offsets.size() == points.size()
matrix
<
double
,
0
,
1
>
slopes
;
// slopes.size() == points[0].first.size()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment