Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
960f9cde
Commit
960f9cde
authored
Jul 29, 2012
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added a per node loss option to the structural_svm_graph_labeling_problem's
interface.
parent
374459b4
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
145 additions
and
12 deletions
+145
-12
structural_graph_labeling_trainer.h
dlib/svm/structural_graph_labeling_trainer.h
+2
-1
structural_svm_graph_labeling_problem.h
dlib/svm/structural_svm_graph_labeling_problem.h
+80
-9
structural_svm_graph_labeling_problem_abstract.h
dlib/svm/structural_svm_graph_labeling_problem_abstract.h
+63
-2
No files found.
dlib/svm/structural_graph_labeling_trainer.h
View file @
960f9cde
...
...
@@ -180,7 +180,8 @@ namespace dlib
);
structural_svm_graph_labeling_problem
<
graph_type
>
prob
(
samples
,
labels
,
num_threads
);
std
::
vector
<
std
::
vector
<
double
>
>
losses
;
structural_svm_graph_labeling_problem
<
graph_type
>
prob
(
samples
,
labels
,
losses
,
num_threads
);
if
(
verbose
)
prob
.
be_verbose
();
...
...
dlib/svm/structural_svm_graph_labeling_problem.h
View file @
960f9cde
...
...
@@ -83,6 +83,46 @@ namespace dlib
return
true
;
}
// ----------------------------------------------------------------------------------------
template
<
typename
T
,
typename
U
>
bool
sizes_match
(
const
std
::
vector
<
std
::
vector
<
T
>
>&
lhs
,
const
std
::
vector
<
std
::
vector
<
U
>
>&
rhs
)
{
if
(
lhs
.
size
()
!=
rhs
.
size
())
return
false
;
for
(
unsigned
long
i
=
0
;
i
<
lhs
.
size
();
++
i
)
{
if
(
lhs
[
i
].
size
()
!=
rhs
[
i
].
size
())
return
false
;
}
return
true
;
}
// ----------------------------------------------------------------------------------------
inline
bool
all_values_are_nonnegative
(
const
std
::
vector
<
std
::
vector
<
double
>
>&
x
)
{
for
(
unsigned
long
i
=
0
;
i
<
x
.
size
();
++
i
)
{
for
(
unsigned
long
j
=
0
;
j
<
x
[
i
].
size
();
++
j
)
{
if
(
x
[
i
][
j
]
<
0
)
return
false
;
}
}
return
true
;
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
...
...
@@ -135,18 +175,25 @@ namespace dlib
structural_svm_graph_labeling_problem
(
const
dlib
::
array
<
sample_type
>&
samples_
,
const
std
::
vector
<
label_type
>&
labels_
,
const
std
::
vector
<
std
::
vector
<
double
>
>&
losses_
,
unsigned
long
num_threads
=
2
)
:
structural_svm_problem_threaded
<
matrix_type
,
feature_vector_type
>
(
num_threads
),
samples
(
samples_
),
labels
(
labels_
)
labels
(
labels_
),
losses
(
losses_
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
is_graph_labeling_problem
(
samples
,
labels
)
==
true
,
DLIB_ASSERT
(
is_graph_labeling_problem
(
samples
,
labels
)
==
true
&&
(
losses
.
size
()
==
0
||
sizes_match
(
labels
,
losses
)
==
true
)
&&
all_values_are_nonnegative
(
losses
)
==
true
,
"
\t
structural_svm_graph_labeling_problem::structural_svm_graph_labeling_problem()"
<<
"
\n\t
Invalid inputs were given to this function."
<<
"
\n\t
samples.size(): "
<<
samples
.
size
()
<<
"
\n\t
labels.size(): "
<<
labels
.
size
()
<<
"
\n\t
losses.size(): "
<<
losses
.
size
()
<<
"
\n\t
sizes_match(labels,losses): "
<<
sizes_match
(
labels
,
losses
)
<<
"
\n\t
all_values_are_nonnegative(losses): "
<<
all_values_are_nonnegative
(
losses
)
<<
"
\n\t
this: "
<<
this
);
loss_pos
=
1
.
0
;
...
...
@@ -168,6 +215,9 @@ namespace dlib
}
}
const
std
::
vector
<
std
::
vector
<
double
>
>&
get_losses
(
)
const
{
return
losses
;
}
long
get_num_edge_weights
(
)
const
{
...
...
@@ -179,8 +229,8 @@ namespace dlib
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
loss
>=
0
,
"
\t
structural_svm_graph_labeling_problem::set_loss_on_positive_class()"
DLIB_ASSERT
(
loss
>=
0
&&
get_losses
().
size
()
==
0
,
"
\t
void
structural_svm_graph_labeling_problem::set_loss_on_positive_class()"
<<
"
\n\t
Invalid inputs were given to this function."
<<
"
\n\t
loss: "
<<
loss
<<
"
\n\t
this: "
<<
this
);
...
...
@@ -193,8 +243,8 @@ namespace dlib
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
loss
>=
0
,
"
\t
structural_svm_graph_labeling_problem::set_loss_on_negative_class()"
DLIB_ASSERT
(
loss
>=
0
&&
get_losses
().
size
()
==
0
,
"
\t
void
structural_svm_graph_labeling_problem::set_loss_on_negative_class()"
<<
"
\n\t
Invalid inputs were given to this function."
<<
"
\n\t
loss: "
<<
loss
<<
"
\n\t
this: "
<<
this
);
...
...
@@ -203,10 +253,28 @@ namespace dlib
}
double
get_loss_on_negative_class
(
)
const
{
return
loss_neg
;
}
)
const
{
// make sure requires clause is not broken
DLIB_ASSERT
(
get_losses
().
size
()
==
0
,
"
\t
double structural_svm_graph_labeling_problem::get_loss_on_negative_class()"
<<
"
\n\t
Invalid inputs were given to this function."
<<
"
\n\t
this: "
<<
this
);
return
loss_neg
;
}
double
get_loss_on_positive_class
(
)
const
{
return
loss_pos
;
}
)
const
{
// make sure requires clause is not broken
DLIB_ASSERT
(
get_losses
().
size
()
==
0
,
"
\t
double structural_svm_graph_labeling_problem::get_loss_on_positive_class()"
<<
"
\n\t
Invalid inputs were given to this function."
<<
"
\n\t
this: "
<<
this
);
return
loss_pos
;
}
private
:
...
...
@@ -386,7 +454,9 @@ namespace dlib
const
bool
true_label
=
labels
[
sample_idx
][
node_idx
];
if
(
true_label
!=
predicted_label
)
{
if
(
true_label
==
true
)
if
(
losses
.
size
()
!=
0
)
return
losses
[
sample_idx
][
node_idx
];
else
if
(
true_label
==
true
)
return
loss_pos
;
else
return
loss_neg
;
...
...
@@ -400,6 +470,7 @@ namespace dlib
const
dlib
::
array
<
sample_type
>&
samples
;
const
std
::
vector
<
label_type
>&
labels
;
const
std
::
vector
<
std
::
vector
<
double
>
>&
losses
;
long
node_dims
;
long
edge_dims
;
...
...
dlib/svm/structural_svm_graph_labeling_problem_abstract.h
View file @
960f9cde
...
...
@@ -55,6 +55,36 @@ namespace dlib
- All vectors have non-zero size. That is, they have more than 0 dimensions.
!*/
// ----------------------------------------------------------------------------------------
template
<
typename
T
,
typename
U
>
bool
sizes_match
(
const
std
::
vector
<
std
::
vector
<
T
>
>&
lhs
,
const
std
::
vector
<
std
::
vector
<
U
>
>&
rhs
);
/*!
ensures
- returns true if the sizes of lhs and rhs, as well as their constituent vectors
all match. In particular, we return true if all of the following conditions are
met and false otherwise:
- lhs.size() == rhs.size()
- for all valid i:
- lhs[i].size() == rhs[i].size()
!*/
// ----------------------------------------------------------------------------------------
bool
all_values_are_nonnegative
(
const
std
::
vector
<
std
::
vector
<
double
>
>&
x
);
/*!
ensures
- returns true if all the double values contained in x are >= 0.
!*/
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
...
...
@@ -87,11 +117,15 @@ namespace dlib
structural_svm_graph_labeling_problem
(
const
dlib
::
array
<
sample_type
>&
samples
,
const
std
::
vector
<
label_type
>&
labels
,
const
std
::
vector
<
std
::
vector
<
double
>
>&
losses
,
unsigned
long
num_threads
);
/*!
requires
- is_graph_labeling_problem(samples,labels) == true
- if (losses.size() != 0) then
- sizes_match(labels, losses) == true
- all_values_are_nonnegative(losses) == true
ensures
- This object attempts to learn a mapping from the given samples to the
given labels. In particular, it attempts to learn to predict labels[i]
...
...
@@ -107,8 +141,29 @@ namespace dlib
- This object will use num_threads threads during the optimization
procedure. You should set this parameter equal to the number of
available processing cores on your machine.
- #get_loss_on_positive_class() == 1.0
- #get_loss_on_negative_class() == 1.0
- if (losses.size() == 0) then
- #get_loss_on_positive_class() == 1.0
- #get_loss_on_negative_class() == 1.0
- #get_losses().size() == 0
- the losses argument is effectively ignored if its size is zero.
- else
- #get_losses() == losses
- Each node in the training data has its own loss value defined by
the corresponding entry of losses. In particular, this means that
the node with label labels[i][j] incurs a loss of losses[i][j] if
it is incorrectly labeled.
- The get_loss_on_positive_class() and get_loss_on_negative_class()
parameters are ignored. Only get_losses() is used in this case.
!*/
const
std
::
vector
<
std
::
vector
<
double
>
>&
get_losses
(
)
const
;
/*!
ensures
- returns the losses vector given to this object's constructor.
This vector defines the per sample loss values used. If the vector
is empty then the loss values defined by get_loss_on_positive_class() and
get_loss_on_positive_class() are used instead.
!*/
long
get_num_edge_weights
(
...
...
@@ -128,6 +183,7 @@ namespace dlib
/*!
requires
- loss >= 0
- get_losses().size() == 0
ensures
- #get_loss_on_positive_class() == loss
!*/
...
...
@@ -138,6 +194,7 @@ namespace dlib
/*!
requires
- loss >= 0
- get_losses().size() == 0
ensures
- #get_loss_on_negative_class() == loss
!*/
...
...
@@ -145,6 +202,8 @@ namespace dlib
double
get_loss_on_positive_class
(
)
const
;
/*!
requires
- get_losses().size() == 0
ensures
- returns the loss incurred when a graph node which is supposed to have
a label of true gets misclassified. This value controls how much we care
...
...
@@ -155,6 +214,8 @@ namespace dlib
double
get_loss_on_negative_class
(
)
const
;
/*!
requires
- get_losses().size() == 0
ensures
- returns the loss incurred when a graph node which is supposed to have
a label of false gets misclassified. This value controls how much we care
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment