Commit cd8ba14f authored by Davis King's avatar Davis King

Added an example showing how to use second derivative information

when using the optimization tools.
parent c4a63d77
......@@ -64,6 +64,22 @@ const column_vector rosen_derivative ( const column_vector& m)
return res;
}
// This function computes the Hessian matrix for the rosen() fuction. This is
// the matrix of second derivatives.
matrix<double> rosen_hessian (const column_vector& m)
{
const double x = m(0);
const double y = m(1);
matrix<double> res(2,2);
// now compute the second derivatives
res(0,0) = 1200*x*x - 400*y + 2; // second derivative with respect to x
res(1,0) = res(0,1) = -400*x; // derivative with respect to x and y
res(1,1) = 200; // second derivative with respect to y
return res;
}
// ----------------------------------------------------------------------------------------
class test_function
......@@ -109,6 +125,34 @@ private:
// ----------------------------------------------------------------------------------------
class rosen_model
{
/*!
This object is a "function model" which can be used with the
find_min_trust_region() routine.
!*/
public:
typedef ::column_vector column_vector;
typedef matrix<double> general_matrix;
double operator() (
const column_vector& x
) const { return rosen(x); }
void get_derivative_and_hessian (
const column_vector& x,
column_vector& der,
general_matrix& hess
) const
{
der = rosen_derivative(x);
hess = rosen_hessian(x);
}
};
// ----------------------------------------------------------------------------------------
int main()
{
try
......@@ -153,7 +197,7 @@ int main()
&rosen, &rosen_derivative, starting_point, -1);
// Once the function ends the starting_point vector will contain the optimum point
// of (1,1).
cout << starting_point << endl;
cout << "rosen solution:\n" << starting_point << endl;
// Now lets try doing it again with a different starting point and the version
......@@ -165,7 +209,7 @@ int main()
objective_delta_stop_strategy(1e-7),
&rosen, starting_point, -1);
// Again the correct minimum point is found and stored in starting_point
cout << starting_point << endl;
cout << "rosen solution:\n" << starting_point << endl;
// Here we repeat the same thing as above but this time using the L-BFGS
......@@ -186,8 +230,31 @@ int main()
find_min_using_approximate_derivatives(lbfgs_search_strategy(10),
objective_delta_stop_strategy(1e-7),
&rosen, starting_point, -1);
cout << starting_point << endl;
cout << "rosen solution: \n"<< starting_point << endl;
// In many cases, it is useful if we also provide second derivative information
// to the optimizers. Two examples of how we can do that are shown below.
starting_point = 0.8, 1.3;
find_min(newton_search_strategy(&rosen_hessian),
objective_delta_stop_strategy(1e-7),
&rosen,
&rosen_derivative,
starting_point,
-1);
cout << "rosen solution: \n"<< starting_point << endl;
// We can also use find_min_trust_region(), which is also a method which uses
// second derivatives. For some kinds of non-convex function it may be more
// reliable than using a newton_search_strategy with find_min().
starting_point = 0.8, 1.3;
find_min_trust_region(objective_delta_stop_strategy(1e-7),
rosen_model(),
starting_point,
10 // initial trust region radius
);
cout << "rosen solution: \n"<< starting_point << endl;
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment