Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
cd8ba14f
Commit
cd8ba14f
authored
Jan 26, 2013
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added an example showing how to use second derivative information
when using the optimization tools.
parent
c4a63d77
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
70 additions
and
3 deletions
+70
-3
optimization_ex.cpp
examples/optimization_ex.cpp
+70
-3
No files found.
examples/optimization_ex.cpp
View file @
cd8ba14f
...
@@ -64,6 +64,22 @@ const column_vector rosen_derivative ( const column_vector& m)
...
@@ -64,6 +64,22 @@ const column_vector rosen_derivative ( const column_vector& m)
return
res
;
return
res
;
}
}
// This function computes the Hessian matrix for the rosen() fuction. This is
// the matrix of second derivatives.
matrix
<
double
>
rosen_hessian
(
const
column_vector
&
m
)
{
const
double
x
=
m
(
0
);
const
double
y
=
m
(
1
);
matrix
<
double
>
res
(
2
,
2
);
// now compute the second derivatives
res
(
0
,
0
)
=
1200
*
x
*
x
-
400
*
y
+
2
;
// second derivative with respect to x
res
(
1
,
0
)
=
res
(
0
,
1
)
=
-
400
*
x
;
// derivative with respect to x and y
res
(
1
,
1
)
=
200
;
// second derivative with respect to y
return
res
;
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
class
test_function
class
test_function
...
@@ -109,6 +125,34 @@ private:
...
@@ -109,6 +125,34 @@ private:
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
class
rosen_model
{
/*!
This object is a "function model" which can be used with the
find_min_trust_region() routine.
!*/
public
:
typedef
::
column_vector
column_vector
;
typedef
matrix
<
double
>
general_matrix
;
double
operator
()
(
const
column_vector
&
x
)
const
{
return
rosen
(
x
);
}
void
get_derivative_and_hessian
(
const
column_vector
&
x
,
column_vector
&
der
,
general_matrix
&
hess
)
const
{
der
=
rosen_derivative
(
x
);
hess
=
rosen_hessian
(
x
);
}
};
// ----------------------------------------------------------------------------------------
int
main
()
int
main
()
{
{
try
try
...
@@ -153,7 +197,7 @@ int main()
...
@@ -153,7 +197,7 @@ int main()
&
rosen
,
&
rosen_derivative
,
starting_point
,
-
1
);
&
rosen
,
&
rosen_derivative
,
starting_point
,
-
1
);
// Once the function ends the starting_point vector will contain the optimum point
// Once the function ends the starting_point vector will contain the optimum point
// of (1,1).
// of (1,1).
cout
<<
starting_point
<<
endl
;
cout
<<
"rosen solution:
\n
"
<<
starting_point
<<
endl
;
// Now lets try doing it again with a different starting point and the version
// Now lets try doing it again with a different starting point and the version
...
@@ -165,7 +209,7 @@ int main()
...
@@ -165,7 +209,7 @@ int main()
objective_delta_stop_strategy
(
1e-7
),
objective_delta_stop_strategy
(
1e-7
),
&
rosen
,
starting_point
,
-
1
);
&
rosen
,
starting_point
,
-
1
);
// Again the correct minimum point is found and stored in starting_point
// Again the correct minimum point is found and stored in starting_point
cout
<<
starting_point
<<
endl
;
cout
<<
"rosen solution:
\n
"
<<
starting_point
<<
endl
;
// Here we repeat the same thing as above but this time using the L-BFGS
// Here we repeat the same thing as above but this time using the L-BFGS
...
@@ -186,8 +230,31 @@ int main()
...
@@ -186,8 +230,31 @@ int main()
find_min_using_approximate_derivatives
(
lbfgs_search_strategy
(
10
),
find_min_using_approximate_derivatives
(
lbfgs_search_strategy
(
10
),
objective_delta_stop_strategy
(
1e-7
),
objective_delta_stop_strategy
(
1e-7
),
&
rosen
,
starting_point
,
-
1
);
&
rosen
,
starting_point
,
-
1
);
cout
<<
starting_point
<<
endl
;
cout
<<
"rosen solution:
\n
"
<<
starting_point
<<
endl
;
// In many cases, it is useful if we also provide second derivative information
// to the optimizers. Two examples of how we can do that are shown below.
starting_point
=
0.8
,
1.3
;
find_min
(
newton_search_strategy
(
&
rosen_hessian
),
objective_delta_stop_strategy
(
1e-7
),
&
rosen
,
&
rosen_derivative
,
starting_point
,
-
1
);
cout
<<
"rosen solution:
\n
"
<<
starting_point
<<
endl
;
// We can also use find_min_trust_region(), which is also a method which uses
// second derivatives. For some kinds of non-convex function it may be more
// reliable than using a newton_search_strategy with find_min().
starting_point
=
0.8
,
1.3
;
find_min_trust_region
(
objective_delta_stop_strategy
(
1e-7
),
rosen_model
(),
starting_point
,
10
// initial trust region radius
);
cout
<<
"rosen solution:
\n
"
<<
starting_point
<<
endl
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment