Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
e61caca3
Commit
e61caca3
authored
Dec 04, 2011
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Filled out the spec and added the usual boilerplate for a trainer object.
parent
93709d03
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
399 additions
and
24 deletions
+399
-24
structural_assignment_trainer.h
dlib/svm/structural_assignment_trainer.h
+171
-24
structural_assignment_trainer_abstract.h
dlib/svm/structural_assignment_trainer_abstract.h
+228
-0
No files found.
dlib/svm/structural_assignment_trainer.h
View file @
e61caca3
...
@@ -22,48 +22,195 @@ namespace dlib
...
@@ -22,48 +22,195 @@ namespace dlib
public
:
public
:
typedef
typename
feature_extractor
::
lhs_element
lhs_element
;
typedef
typename
feature_extractor
::
lhs_element
lhs_element
;
typedef
typename
feature_extractor
::
rhs_element
rhs_element
;
typedef
typename
feature_extractor
::
rhs_element
rhs_element
;
typedef
std
::
pair
<
std
::
vector
<
lhs_element
>
,
std
::
vector
<
rhs_element
>
>
sample_type
;
typedef
std
::
pair
<
std
::
vector
<
lhs_element
>
,
std
::
vector
<
rhs_element
>
>
sample_type
;
typedef
std
::
vector
<
long
>
label_type
;
typedef
std
::
vector
<
long
>
label_type
;
typedef
assignment_function
<
feature_extractor
>
trained_function_type
;
typedef
assignment_function
<
feature_extractor
>
trained_function_type
;
bool
forces_assignment
(
structural_assignment_trainer
(
)
const
{
return
false
;
}
// TODO
)
{
set_defaults
();
}
const
assignment_function
<
feature_extractor
>
train
(
explicit
structural_assignment_trainer
(
const
std
::
vector
<
sample_type
>&
x
,
const
feature_extractor
&
fe_
const
std
::
vector
<
label_type
>&
y
)
:
fe
(
fe_
)
{
set_defaults
();
}
const
feature_extractor
&
get_feature_extractor
(
)
const
{
return
fe
;
}
void
set_num_threads
(
unsigned
long
num
)
{
num_threads
=
num
;
}
unsigned
long
get_num_threads
(
)
const
)
const
/*!
requires
- is_assignment_problem(x,y) == true
- if (force assignment) then
- is_forced_assignment_problem(x,y) == true
!*/
{
{
DLIB_CASSERT
(
is_assignment_problem
(
x
,
y
),
""
);
return
num_threads
;
}
void
set_epsilon
(
double
eps_
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
eps_
>
0
,
"
\t
void structural_assignment_trainer::set_epsilon()"
<<
"
\n\t
eps_ must be greater than 0"
<<
"
\n\t
eps_: "
<<
eps_
<<
"
\n\t
this: "
<<
this
);
eps
=
eps_
;
}
feature_extractor
fe
;
double
get_epsilon
(
)
const
{
return
eps
;
}
bool
force_assignment
=
false
;
void
set_max_cache_size
(
unsigned
long
num_threads
=
1
;
unsigned
long
max_size
structural_svm_assignment_problem
<
feature_extractor
>
prob
(
x
,
y
,
fe
,
force_assignment
,
num_threads
);
)
{
max_cache_size
=
max_size
;
}
prob
.
be_verbose
();
unsigned
long
get_max_cache_size
(
prob
.
set_c
(
50
);
)
const
prob
.
set_epsilon
(
1e-10
);
{
oca
solver
;
return
max_cache_size
;
}
void
be_verbose
(
)
{
verbose
=
true
;
}
void
be_quiet
(
)
{
verbose
=
false
;
}
void
set_oca
(
const
oca
&
item
)
{
solver
=
item
;
}
const
oca
get_oca
(
)
const
{
return
solver
;
}
void
set_c
(
double
C_
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
C_
>
0
,
"
\t
void structural_assignment_trainer::set_c()"
<<
"
\n\t
C_ must be greater than 0"
<<
"
\n\t
C_: "
<<
C_
<<
"
\n\t
this: "
<<
this
);
C
=
C_
;
}
double
get_c
(
)
const
{
return
C
;
}
bool
forces_assignment
(
)
const
{
return
force_assignment
;
}
void
set_forces_assignment
(
bool
new_value
)
{
force_assignment
=
new_value
;
}
const
assignment_function
<
feature_extractor
>
train
(
const
std
::
vector
<
sample_type
>&
samples
,
const
std
::
vector
<
label_type
>&
labels
)
const
{
// make sure requires clause is not broken
#ifdef ENABLE_ASSERTS
if
(
force_assignment
)
{
DLIB_ASSERT
(
is_forced_assignment_problem
(
samples
,
labels
),
"
\t
assignment_function structural_assignment_trainer::train()"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
is_forced_assignment_problem(samples,labels): "
<<
is_forced_assignment_problem
(
samples
,
labels
)
<<
"
\n\t
is_assignment_problem(samples,labels): "
<<
is_assignment_problem
(
samples
,
labels
)
<<
"
\n\t
is_learning_problem(samples,labels): "
<<
is_learning_problem
(
samples
,
labels
)
);
}
else
{
DLIB_ASSERT
(
is_assignment_problem
(
samples
,
labels
),
"
\t
assignment_function structural_assignment_trainer::train()"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
is_assignment_problem(samples,labels): "
<<
is_assignment_problem
(
samples
,
labels
)
<<
"
\n\t
is_learning_problem(samples,labels): "
<<
is_learning_problem
(
samples
,
labels
)
);
}
#endif
structural_svm_assignment_problem
<
feature_extractor
>
prob
(
samples
,
labels
,
fe
,
force_assignment
,
num_threads
);
if
(
verbose
)
prob
.
be_verbose
();
prob
.
set_c
(
C
);
prob
.
set_epsilon
(
eps
);
prob
.
set_max_cache_size
(
max_cache_size
);
matrix
<
double
,
0
,
1
>
weights
;
matrix
<
double
,
0
,
1
>
weights
;
solver
(
prob
,
weights
);
solver
(
prob
,
weights
);
std
::
cout
<<
"weights: "
<<
trans
(
weights
)
<<
std
::
endl
;
return
assignment_function
<
feature_extractor
>
(
fe
,
weights
,
force_assignment
);
return
assignment_function
<
feature_extractor
>
(
fe
,
weights
,
force_assignment
);
}
}
private
:
bool
force_assignment
;
double
C
;
oca
solver
;
double
eps
;
bool
verbose
;
unsigned
long
num_threads
;
unsigned
long
max_cache_size
;
void
set_defaults
()
{
force_assignment
=
false
;
C
=
100
;
verbose
=
false
;
eps
=
0
.
1
;
num_threads
=
2
;
max_cache_size
=
40
;
}
feature_extractor
fe
;
};
};
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
...
...
dlib/svm/structural_assignment_trainer_abstract.h
View file @
e61caca3
// Copyright (C) 2011 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_STRUCTURAL_ASSiGNMENT_TRAINER_ABSTRACT_H__
#ifdef DLIB_STRUCTURAL_ASSiGNMENT_TRAINER_ABSTRACT_H__
#include "../algs.h"
#include "structural_svm_assignment_problem.h"
#include "assignment_function_abstract.h"
namespace
dlib
{
// ----------------------------------------------------------------------------------------
template
<
typename
feature_extractor
>
class
structural_assignment_trainer
{
/*!
REQUIREMENTS ON feature_extractor
It must be an object that implements an interface compatible with
the example_feature_extractor defined in dlib/svm/assignment_function_abstract.h.
WHAT THIS OBJECT REPRESENTS
This object is a tool for learning to solve the assignment problem based
on a set of training data. The training procedure produces an
assignment_function object which can be used to predict the assignments of
new data.
Note that this is just a convenience wrapper around the
structural_svm_assignment_problem to make it look
similar to all the other trainers in dlib.
!*/
public
:
typedef
typename
feature_extractor
::
lhs_element
lhs_element
;
typedef
typename
feature_extractor
::
rhs_element
rhs_element
;
typedef
std
::
pair
<
std
::
vector
<
lhs_element
>
,
std
::
vector
<
rhs_element
>
>
sample_type
;
typedef
std
::
vector
<
long
>
label_type
;
typedef
assignment_function
<
feature_extractor
>
trained_function_type
;
structural_assignment_trainer
(
);
/*!
ensures
- #get_c() == 100
- this object isn't verbose
- #get_epsilon() == 0.1
- #get_num_threads() == 2
- #get_max_cache_size() == 40
- #get_feature_extractor() == a default initialized feature_extractor
- #forces_assignment() == false
!*/
explicit
structural_assignment_trainer
(
const
feature_extractor
&
fe
);
/*!
ensures
- #get_c() == 100
- this object isn't verbose
- #get_epsilon() == 0.1
- #get_num_threads() == 2
- #get_max_cache_size() == 40
- #get_feature_extractor() == fe
- #forces_assignment() == false
!*/
const
feature_extractor
&
get_feature_extractor
(
)
const
;
/*!
ensures
- returns the feature extractor used by this object
!*/
void
set_num_threads
(
unsigned
long
num
);
/*!
ensures
- #get_num_threads() == num
!*/
unsigned
long
get_num_threads
(
)
const
;
/*!
ensures
- returns the number of threads used during training. You should
usually set this equal to the number of processing cores on your
machine.
!*/
void
set_epsilon
(
double
eps
);
/*!
requires
- eps > 0
ensures
- #get_epsilon() == eps
!*/
double
get_epsilon
(
)
const
;
/*!
ensures
- returns the error epsilon that determines when training should stop.
Smaller values may result in a more accurate solution but take longer
to train. You can think of this epsilon value as saying "solve the
optimization problem until the average number of assignment mistakes per
training sample is within epsilon of its optimal value".
!*/
void
set_max_cache_size
(
unsigned
long
max_size
);
/*!
ensures
- #get_max_cache_size() == max_size
!*/
unsigned
long
get_max_cache_size
(
)
const
;
/*!
ensures
- During training, this object basically runs the assignment_function on
each training sample, over and over. To speed this up, it is possible to
cache the results of these invocations. This function returns the number
of cache elements per training sample kept in the cache. Note that a value
of 0 means caching is not used at all.
!*/
void
be_verbose
(
);
/*!
ensures
- This object will print status messages to standard out so that a
user can observe the progress of the algorithm.
!*/
void
be_quiet
(
);
/*!
ensures
- this object will not print anything to standard out
!*/
void
set_oca
(
const
oca
&
item
);
/*!
ensures
- #get_oca() == item
!*/
const
oca
get_oca
(
)
const
;
/*!
ensures
- returns a copy of the optimizer used to solve the structural SVM problem.
!*/
void
set_c
(
double
C
);
/*!
requires
- C > 0
ensures
- #get_c() = C
!*/
double
get_c
(
)
const
;
/*!
ensures
- returns the SVM regularization parameter. It is the parameter
that determines the trade-off between trying to fit the training
data (i.e. minimize the loss) or allowing more errors but hopefully
improving the generalization of the resulting assignment_function.
Larger values encourage exact fitting while smaller values of C may
encourage better generalization.
!*/
void
set_forces_assignment
(
bool
new_value
);
/*!
ensures
- #forces_assignment() == new_value
!*/
bool
forces_assignment
(
)
const
;
/*!
ensures
- returns the value of the forces_assignment() parameter for the
assignment_functions generated by this object.
!*/
const
assignment_function
<
feature_extractor
>
train
(
const
std
::
vector
<
sample_type
>&
samples
,
const
std
::
vector
<
label_type
>&
labels
)
const
;
/*!
requires
- is_assignment_problem(samples,labels) == true
- if (forces_assignment()) then
- is_forced_assignment_problem(samples,labels) == true
ensures
- Uses the structural_svm_assignment_problem to train an
assignment_function on the given samples/labels training pairs.
The idea is to learn to predict a label given an input sample.
- returns a function F with the following properties:
- F(new_sample) == A set of assignments indicating how the elements of
new_sample.first match up with the elements of new_sample.second.
- F.forces_assignment() == forces_assignment()
- F.get_feature_extractor() == get_feature_extractor()
!*/
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_STRUCTURAL_ASSiGNMENT_TRAINER_ABSTRACT_H__
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment