diaryQueueUpdate.py 11.6 KB
Newer Older
1
#!/srv/envs/nvwa/bin/python
张彦钊's avatar
张彦钊 committed
2
# -*- coding: utf-8 -*-
张彦钊's avatar
张彦钊 committed
3 4
import pickle
import xlearn as xl
张彦钊's avatar
张彦钊 committed
5 6 7
import pandas as pd
import pymysql
from datetime import datetime
张彦钊's avatar
张彦钊 committed
8
# utils 包必须要导,否则ffm转化时用到的pickle找不到utils,会报错
张彦钊's avatar
张彦钊 committed
9
import utils
10
import warnings
11
from multiprocessing import Pool
12
from userProfile import get_active_users
张彦钊's avatar
张彦钊 committed
13
from sklearn.preprocessing import MinMaxScaler
张彦钊's avatar
张彦钊 committed
14
import time
15
from config import *
张彦钊's avatar
张彦钊 committed
16

张彦钊's avatar
张彦钊 committed
17

18
def get_video_id(cache_video_id):
张彦钊's avatar
张彦钊 committed
19 20 21 22 23 24
    db = pymysql.connect(host='10.66.157.22', port=4000, user='root', passwd='3SYz54LS9#^9sBvC', db='eagle')
    cursor = db.cursor()
    sql = "select diary_id from feed_diary_boost;"
    cursor.execute(sql)
    result = cursor.fetchall()
    df = pd.DataFrame(list(result))
张彦钊's avatar
张彦钊 committed
25
    print("videio_id 预览")
26
    print(df.head(1))
张彦钊's avatar
张彦钊 committed
27
    db.close()
28
    if df.empty:
29
        return cache_video_id
30 31 32
    else:
        video_id = df[0].values.tolist()
        return video_id
张彦钊's avatar
张彦钊 committed
33

34

张彦钊's avatar
张彦钊 committed
35
# 将device_id、city_id拼接到对应的城市热门日记表。注意:下面预测集特征顺序要与训练集保持一致
36
def feature_en(x_list, device_id):
张彦钊's avatar
张彦钊 committed
37
    data = pd.DataFrame(x_list)
张彦钊's avatar
张彦钊 committed
38
    # 下面的列名一定要用cid,不能用diaryid,因为预测模型用到的ffm上是cid
张彦钊's avatar
张彦钊 committed
39
    data = data.rename(columns={0: "cid"})
张彦钊's avatar
张彦钊 committed
40 41 42 43 44 45 46 47 48 49
    data["device_id"] = device_id
    now = datetime.now()
    data["hour"] = now.hour
    data["minute"] = now.minute
    data.loc[data["hour"] == 0, ["hour"]] = 24
    data.loc[data["minute"] == 0, ["minute"]] = 60
    data["hour"] = data["hour"].astype("category")
    data["minute"] = data["minute"].astype("category")
    # 虽然预测y,但ffm转化需要y,并不影响预测结果
    data["y"] = 0
张彦钊's avatar
张彦钊 committed
50
    # print("done 特征工程")
51

张彦钊's avatar
张彦钊 committed
52 53 54
    return data


55 56
# 把ffm.pkl load进来,将上面的数据转化为ffm格式
def transform_ffm_format(df,queue_name,device_id):
张彦钊's avatar
张彦钊 committed
57
    with open(DIRECTORY_PATH + "ffm.pkl", "rb") as f:
张彦钊's avatar
张彦钊 committed
58
        ffm_format_pandas = pickle.load(f)
张彦钊's avatar
张彦钊 committed
59
        data = ffm_format_pandas.native_transform(df)
张彦钊's avatar
张彦钊 committed
60
        predict_file_name = DIRECTORY_PATH + "result/{0}_{1}.csv".format(device_id, queue_name)
61
        data.to_csv(predict_file_name, index=False, header=None)
张彦钊's avatar
张彦钊 committed
62
        # print("done ffm")
张彦钊's avatar
张彦钊 committed
63 64 65
        return predict_file_name


66
def predict(queue_name,queue_arg,device_id):
67 68
    data = feature_en(queue_arg[0], device_id)
    data_file_path = transform_ffm_format(data,queue_name,device_id)
张彦钊's avatar
张彦钊 committed
69
    ffm_model = xl.create_ffm()
70
    ffm_model.setTest(data_file_path)
张彦钊's avatar
张彦钊 committed
71
    ffm_model.setSigmoid()
张彦钊's avatar
张彦钊 committed
72
    ffm_model.predict(DIRECTORY_PATH + "model.out",
73
                      DIRECTORY_PATH + "result/output{0}_{1}.csv".format(device_id, queue_name))
张彦钊's avatar
张彦钊 committed
74

张彦钊's avatar
张彦钊 committed
75

76 77
def save_result(queue_name,queue_arg,device_id):
    score_df = pd.read_csv(DIRECTORY_PATH + "result/output{0}_{1}.csv".format(device_id, queue_name), header=None)
张彦钊's avatar
张彦钊 committed
78
    mm_scaler = MinMaxScaler()
张彦钊's avatar
张彦钊 committed
79
    mm_scaler.fit(score_df)
张彦钊's avatar
张彦钊 committed
80
    score_df = pd.DataFrame(mm_scaler.transform(score_df))
81
    score_df = score_df.rename(columns={0: "score"})
82 83 84
    score_df["cid"] = queue_arg[0]
    # 去掉cid前面的"diary|"
    score_df["cid"] = score_df["cid"].apply(lambda x:x[6:])
张彦钊's avatar
张彦钊 committed
85 86 87
    # print("score_df:")
    # print(score_df.head(1))
    # print(score_df.shape)
88 89 90 91 92
    if queue_arg[1] != []:
        df_temp = pd.DataFrame(queue_arg[1]).rename(columns={0: "cid"})
        df_temp["score"] = 0
        df_temp = df_temp.sort_index(axis=1,ascending=False)
        df_temp["cid"] = df_temp["cid"].apply(lambda x: x[6:])
张彦钊's avatar
张彦钊 committed
93

94
        predict_score_df = score_df.append(df_temp)
张彦钊's avatar
张彦钊 committed
95

96
        return predict_score_df
张彦钊's avatar
张彦钊 committed
97

98 99
    else:
        return score_df
张彦钊's avatar
张彦钊 committed
100

101

102
def get_score(queue_arg):
张彦钊's avatar
张彦钊 committed
103
    db = pymysql.connect(host='10.66.157.22', port=4000, user='root',passwd='3SYz54LS9#^9sBvC', db='eagle')
104
    cursor = db.cursor()
张彦钊's avatar
张彦钊 committed
105
    # 去除diary_id 前面的"diary|"
106 107
    diary_list = tuple(list(map(lambda x:x[6:],queue_arg[2])))
    sql = "select score,diary_id from biz_feed_diary_score where diary_id in {};".format(diary_list)
108 109
    cursor.execute(sql)
    result = cursor.fetchall()
110
    score_df = pd.DataFrame(list(result)).dropna()
111 112
    db.close()
    return score_df
113 114


张彦钊's avatar
张彦钊 committed
115
def update_dairy_queue(score_df,predict_score_df,total_video_id):
张彦钊's avatar
张彦钊 committed
116
    diary_id = score_df["cid"].values.tolist()
117
    if total_video_id != []:
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
        video_id = list(set(diary_id)&set(total_video_id))
        if len(video_id)>0:
            not_video = list(set(diary_id) - set(video_id))
            # 为了相加时cid能够匹配,先把cid变成索引
            not_video_df = score_df.loc[score_df["cid"].isin(not_video)].set_index(["cid"])
            not_video_predict_df = predict_score_df.loc[predict_score_df["cid"].isin(not_video)].set_index(["cid"])
            not_video_df["score"] = not_video_df["score"] + not_video_predict_df["score"]
            not_video_df = not_video_df.sort_values(by="score", ascending=False)

            video_df = score_df.loc[score_df["cid"].isin(video_id)].set_index(["cid"])
            video_predict_df = predict_score_df.loc[predict_score_df["cid"].isin(video_id)].set_index(["cid"])
            video_df["score"] = video_df["score"] + video_predict_df["score"]
            video_df = video_df.sort_values(by="score", ascending=False)

            not_video_id = not_video_df.index.tolist()
            video_id = video_df.index.tolist()
            new_queue = not_video_id
            i = 1
            for j in video_id:
                new_queue.insert(i, j)
                i += 5

            # print("分数合并成功")
            return new_queue
        # 如果取交集后没有视频日记
        else:
            score_df = score_df.set_index(["cid"])
            predict_score_df = predict_score_df.set_index(["cid"])
            score_df["score"]=score_df["score"]+predict_score_df["score"]
            score_df = score_df.sort_values(by="score", ascending=False)
            # print("分数合并成功1")
            return score_df.index.tolist()
150
    # 如果total_video_id是空列表
151
    else:
152 153
        score_df = score_df.set_index(["cid"])
        predict_score_df = predict_score_df.set_index(["cid"])
154
        score_df["score"] = score_df["score"] + predict_score_df["score"]
张彦钊's avatar
张彦钊 committed
155
        score_df = score_df.sort_values(by="score", ascending=False)
张彦钊's avatar
张彦钊 committed
156
        # print("分数合并成功1")
157
        return score_df.index.tolist()
158 159


160
def update_sql_dairy_queue(queue_name, diary_id,device_id, city_id):
161 162
    db = pymysql.connect(host='rm-m5e842126ng59jrv6.mysql.rds.aliyuncs.com', port=3306, user='doris',
                         passwd='o5gbA27hXHHm', db='doris_prod')
163
    cursor = db.cursor()
164 165 166
    id_str = str(diary_id[0])
    for i in range(1, len(diary_id)):
        id_str = id_str + "," + str(diary_id[i])
张彦钊's avatar
张彦钊 committed
167

168 169 170 171 172
    sql = "update device_diary_queue set {}='{}' where device_id = '{}' and city_id = '{}'".format\
        (queue_name,id_str,device_id, city_id)
    cursor.execute(sql)
    db.commit()
    db.close()
张彦钊's avatar
张彦钊 committed
173
    print("成功写入diary_id")
张彦钊's avatar
张彦钊 committed
174 175


张彦钊's avatar
张彦钊 committed
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
def queue_compare(old_list, new_list):
    global update_queue_numbers
    print("更新日记队列总数:{}".format(update_queue_numbers))
    # 去掉前面的"diary|"
    old_list = list(map(lambda x: int(x[6:]),old_list))
    # print("旧表前十个")
    # print(old_list[:10])
    # print("新表前十个")
    # print(new_list[:10])
    temp = list(range(len(old_list)))
    x_dict = dict(zip(old_list, temp))
    temp = list(range(len(new_list)))
    y_dict = dict(zip(new_list, temp))
    i = 0
    for key in x_dict.keys():
        if x_dict[key] != y_dict[key]:
            i += 1

    if i >0:
        update_queue_numbers += 1
        print("更新日记队列总数:{}".format(update_queue_numbers))
        print("日记队列更新前日记总个数{},位置发生变化个数{},发生变化率{}%".format(len(old_list), i,
                                                          round(i / len(old_list) * 100), 2))
张彦钊's avatar
张彦钊 committed
199 200


201 202 203 204 205 206 207 208 209
def get_queue(device_id, city_id,queue_name):
    db = pymysql.connect(host='rm-m5e842126ng59jrv6.mysql.rds.aliyuncs.com', port=3306, user='doris',
                         passwd='o5gbA27hXHHm', db='doris_prod')
    cursor = db.cursor()
    sql = "select {} from device_diary_queue " \
          "where device_id = '{}' and city_id = '{}';".format(queue_name,device_id, city_id)
    cursor.execute(sql)
    result = cursor.fetchall()
    df = pd.DataFrame(list(result))
张彦钊's avatar
张彦钊 committed
210

211
    if df.empty:
张彦钊's avatar
张彦钊 committed
212
        # print("该用户对应的日记为空")
213 214 215
        return False
    else:
        queue_list = df.loc[0, 0].split(",")
216 217
        queue_list = list(map(lambda x: "diary|" + str(x), queue_list))
        db.close()
张彦钊's avatar
张彦钊 committed
218
        # print("成功获取queue")
219
        return queue_list
张彦钊's avatar
张彦钊 committed
220

张彦钊's avatar
张彦钊 committed
221

张彦钊's avatar
张彦钊 committed
222
def pipe_line(queue_name, queue_arg, device_id,total_video_id):
223
    predict(queue_name, queue_arg, device_id)
224 225
    predict_score_df = save_result(queue_name, queue_arg, device_id)
    score_df = get_score(queue_arg)
226
    if score_df.empty:
张彦钊's avatar
张彦钊 committed
227
        # print("获取的日记列表是空")
228 229 230
        return False
    else:
        score_df = score_df.rename(columns={0: "score", 1: "cid"})
张彦钊's avatar
张彦钊 committed
231

张彦钊's avatar
张彦钊 committed
232
        diary_queue = update_dairy_queue(score_df, predict_score_df,total_video_id)
233 234 235
        return diary_queue


张彦钊's avatar
张彦钊 committed
236
def user_update(device_id, city_id, queue_name,data_set_cid,total_video_id):
张彦钊's avatar
张彦钊 committed
237 238 239 240 241 242
    queue_list = get_queue(device_id, city_id, queue_name)
    if queue_list:
        queue_predict = list(set(queue_list) & set(data_set_cid))
        queue_not_predict = list(set(queue_list) - set(data_set_cid))
        queue_arg = [queue_predict, queue_not_predict, queue_list]
        if queue_predict != []:
张彦钊's avatar
张彦钊 committed
243
            diary_queue = pipe_line(queue_name, queue_arg, device_id,total_video_id)
张彦钊's avatar
张彦钊 committed
244 245
            if diary_queue:
                update_sql_dairy_queue(queue_name, diary_queue, device_id, city_id)
246
                queue_compare(queue_list,diary_queue)
张彦钊's avatar
张彦钊 committed
247
                # print("更新结束")
248
            else:
张彦钊's avatar
张彦钊 committed
249
                print("获取的日记列表是空,所以不更新日记队列")
250
        else:
张彦钊's avatar
张彦钊 committed
251 252 253 254
            print("预测集是空,不需要预测")
    else:
        print("日记队列为空")

张彦钊's avatar
张彦钊 committed
255 256

def multi_proecess_update(device_id, city_id, data_set_cid,total_video_id):
张彦钊's avatar
张彦钊 committed
257
    queue_name_list = ["native_queue","nearby_queue","nation_queue","megacity_queue"]
张彦钊's avatar
张彦钊 committed
258
    pool = Pool(4)
张彦钊's avatar
张彦钊 committed
259
    for queue_name in queue_name_list:
张彦钊's avatar
张彦钊 committed
260
        pool.apply_async(user_update, (device_id, city_id, queue_name,data_set_cid,total_video_id,))
张彦钊's avatar
张彦钊 committed
261 262
    pool.close()
    pool.join()
张彦钊's avatar
张彦钊 committed
263

张彦钊's avatar
张彦钊 committed
264

265
if __name__ == "__main__":
266
    warnings.filterwarnings("ignore")
张彦钊's avatar
张彦钊 committed
267
    total_number = 0
268 269
    # 增加缓存日记视频列表
    cache_video_id = []
270
    cache_device_city_list = []
张彦钊's avatar
张彦钊 committed
271
    update_queue_numbers = 0
张彦钊's avatar
张彦钊 committed
272 273 274 275 276
    while True:
        data_set_cid = pd.read_csv(DIRECTORY_PATH + "data_set_cid.csv")["cid"].values.tolist()
        total_video_id = get_video_id(cache_video_id)
        cache_video_id = total_video_id
        device_city_list = get_active_users()
张彦钊's avatar
张彦钊 committed
277
        print("过滤前用户数:{}".format(len(device_city_list)))
278
        # 过滤掉5分钟内预测过的用户
279
        device_city_list = list(set(tuple(device_city_list))-set(tuple(cache_device_city_list)))
张彦钊's avatar
张彦钊 committed
280
        print("过滤后用户数:{}".format(len(device_city_list)))
张彦钊's avatar
张彦钊 committed
281
        print("缓存视频个数:{}".format(len(cache_device_city_list)))
282 283
        if datetime.now().minute % 5 == 0:
            cache_device_city_list = []
张彦钊's avatar
张彦钊 committed
284
        if device_city_list != []:
285 286 287
            cache_device_city_list.extend(device_city_list)
            total_number += len(device_city_list)
            print("累计预测用户总数:{}".format(total_number))
张彦钊's avatar
张彦钊 committed
288 289 290
            for device_city in device_city_list:
                # start = time.time()
                multi_proecess_update(device_city[0], device_city[1], data_set_cid, total_video_id)
张彦钊's avatar
张彦钊 committed
291 292
                # end = time.time()
                # print("更新该用户队列耗时{}秒".format((end - start)))
张彦钊's avatar
张彦钊 committed
293

张彦钊's avatar
张彦钊 committed
294 295


张彦钊's avatar
张彦钊 committed
296

297
# # TODO 上线后把预测用户改成多进程预测
张彦钊's avatar
张彦钊 committed
298

张彦钊's avatar
张彦钊 committed
299

张彦钊's avatar
张彦钊 committed
300

301

张彦钊's avatar
张彦钊 committed
302